III КОНФЕРЕНЦИЈА
СРПСКОГ КРИСТАЛОГРАФСКОГ ДРУШТВА
Изводи радова

III CONFERENCE
OF THE SERBIAN CRYSTALLOGRAPHIC SOCIETY
Abstracts

БЕОГРАД - BELGRADE
1995
III КОНФЕРЕНЦИЈА
СРПСКОГ КРИСТАЛОГРАФСКОГ ДРУШТВА
Изводи радова

III CONFERENCE
OF THE SERBIAN CRYSTALLOGRAPHIC SOCIETY
Abstracts

БЕОГРАД -BELGRADE
1995
III CONFERENCIJA SRPSKOG KRISTALOGRAFSKOG DRUŠTVABA
Izvodi radova
III CONFERENCE OF THE SERBIAN CRYSTALLOGRAPHIC SOCIETY
Abstracts

Издавач:
- Српско кристалографско друштво,
 Бушнина 7, 11000 Београд, тел./факс: 635-217
- Институт за нуклеарне науке „Винча”, Лабораторија за теоријску физику
 и физику кондензоване материје, п.п. 522, 11001 Београд

Publisher:
- Serbian Crystallographic Society,
 Djušina 7, 11000 Belgrade, Yugoslavia, phone/fax: 381-11-635-217
- Vinča Institute of Nuclear Sciences, Laboratory for Theoretical Physics and
 Physics of Condensed Matter, P.O.Box 522, 11001 Belgrade, Yugoslavia

За издавача - For the publisher:
Дубравко Родић - Dubravko Rodić

Уредници - Editors:
Љиљана Карановић - Ljiljana Kordanović
Илија Крстаповић - Ilija Krstanović
Дејан Полети - Dejan Poleti

Издавање ове публикације омогућено је финансијском помоћу Министарства за
науку и технолошку Републике Србије

This publication is financially supported by the Ministry of Science and Technology
of Republic Serbia

© Српско кристалографско друштво - Serbian Crystallographic Society

ISSN 0354-5741

Штампа - Printing:
Штампарска Института за нуклеарне науке „Винча”, п.п. 522, 11001 Београд,
тел. 458-22/500
Vinča Institute of Nuclear Sciences, P.O.Box 522, 11001 Belgrade, Yugoslavia

Тираж - Copies: 100
Београд - Belgrade
1995
ПРЕДГОВОР

Трета конференција Српског кристалографског друштва (СКД) одржана је 29. и 30. септембра 1994. год. у Новом Саду под покровитељством Српске академије наука и уметности (САНУ) и уз финансијску помоћ Министарства за науку и технологију Републике Србије (МНПС). Трета Скупштина СКД је одржана 30. 9. 1994. год. у Новом Саду у згради САНУ, са почетком у 18 часова са следећим дневним редом:
1. Отварање Скупштине и Извештај о раду СКД у периоду између две конференције,
2. Финансијски извештај,
3. Будуће активности СКД.
1. Отварање Скупштине и Извештај о раду СКД у периоду између две конференције

Академик Бела Рибар, председник СКД, отворио је Скупштину и поздравио присутне госте и чланове друштва. Обавестио их је да је СКД у периоду између II и III Конференције учање од Европског кристалографског комитета (ЕСС). Проф. др С. Стањковић присутовала је као делегат СКД седници ЕСС која је одржана у Дрездену (Немачка). У истом периоду, од 28. августа до 2. септембра 1994. год., одржан је XV Европски кристалографски састанак у чијем су раду учествовала три члана друштва. У истом периоду, прикупљени су, обрађени и посматрају подаци о свим члановима СКД за IX издание публикације „World Directory of Crystallographers”, штампани су Изводи радова I и II Конференције СКД и организована Љиђ Конференција. На Њиђ Конференцији су одржаны три пленарна предања и 18 научних саопштења. Прва пленарна предања одржано је гост СКД проф. А. Калмањ из Будимпеште, друго проф. С. Никетић (Хемијски факултет, Београд) и треће проф. Д. Радић, научни сарадник Института за нукларне науке „Винча”, Београд.
2. Финансијски извештај
3. Будуће акције СКД
Скупштина се сагласила да се IV Конференција одржи у септембру 1995. год. на Борском језеру или у Новом Саду и да се на Конференцију позву кристалографе из суседних земаља. Разматрана је и могућност организовања заједничке српско-мађарске кристалографске конференције. У складу са Статутом СКД потребно је за следећу годину припремити избор нових чланова Председништва СКД. Скупштина је предложила да се изврши могућност прикупљења неком националном кристалографском центру за добијање датотека „Cambridge Data File” уз одговарајућу финансијску надокнађу. Усвојено је да се пленарна предања и изводи III Конференције штампaju само на енглеском језику, а по желе аутора радова могу бити штампани у целини.

Од Југословенског библиографског института ова публикација је добила ознаку ISSN 0354-5741. Она садржи пленарна предања и изводе или радове у целини који су саопштени на III Конференцији СКД. Сви радови су штампани офсет-техником без накнадних корекција. Свако пленарно предање је означено ознаком Р и редним бројем, а саопштење ознаком S и одговарајућим редним бројем.

У Београду, јануар 1995.
Уредници
PREFACE

The III Conference of the Serbian Crystallographic Society (SCS) was held in Novi Sad on September 29-30, 1994 under the auspices of the Serbian Academy of Sciences and Arts (SASA) and with financial support of the Ministry for Science and Technology of the Republic Serbia (MSTRS).

The Assembly of SCS was held on September 29, 1994 in Novi Sad with the following agenda:

1. Opening ceremony and the report of the activity of the SCS between the two conferences,
2. Financial report,
3. Further activities of SCS.

1. Opening ceremony and the report of the activity of the SCS between the two conferences

The session was opened by prof. Bela Ribar, the member of the SASA and president of the SCS. After welcoming the guests and the members of the SCS, he reported that between the II and III conferences SCS has been accepted as the member of European Crystallographic Committee (ECC). Prof. Dr. S. Stanković as the deputy of SCS with some of the members of SCS attended the 15th European Crystallographic Meeting in Dresden, Germany, Aug. 28 - Sept. 2, 1994. The data for all members of SCS for the IX edition of "World Directory of Crystallographers" were prepared. The abstracts I and II Conference of the Serbian Crystallographic Society is published. At the III Conference, the three plenary lectures and 18 scientific reports were presented. Prof. Dr. A. Kálmán, the guest of SCS from Budapest, held the first plenary lecture, the second was presented by Prof. Dr. S. Niketić (Faculty of Chemistry in Belgrade) and the third plenary lecture was presented by Dr. D. Rudić, research associate in the Institute for Nuclear Sciences "Vinča" in Belgrade.

2. Financial report

The Financial report of the secretary of SCS was accepted. Because of difficult financial situation, there is a problem with payment of annual subscription to the IUCr for 1994. During the current year as a new member of IUCr we have received Acta Crystallographica A, B, C and D and Journal of Applied Crystallography free of charge. For the next year this problem has to be solved. Annual fee for the members of SCS is 10 and 5 din. for the students.

3. Further activities of SCS

The Assembly of SCS suggested and confirmed Bor Lake or Novi Sad as the locations for the IV Conference of SCS which will be held in September 1995. The invitations should be send to the crystallographers of neighboring countries. The possibility of the mutual Serbian-Hungarian conference was discussed. According to the Statute of SCS it is necessary for the next year to prepare elections for the Presidency of SCS. The Assembly of SCS suggested to explore the possibilities of our cooperation with some national crystallographic centres in order to get an access to Cambridge Data File with corresponding financial payment. It is accepted that the plenary lectures and abstracts of the III Conference will be printed only in English and on the request of authors could be printed in full.

From the Yugoslav Bibliographic Institute this publication has got the sign ISSN 0354-5741. The publication contains the plenary lectures and abstracts or full papers of lectures presented at the III Conference of SCS. The papers are printed by offset technique as submitted by authors. Each plenary lecture is labelled with P and abstracts by S followed by a serial number.

Belgrade, January 1995 Editors
CONTENTS

PLENARY LECTURES

P1. Alajos Kálmán and Gyula Argay
SIMILARITY AND DISSIMILARITY BETWEEN THE CRYSTALLOGRAPHIC
PHENOMENA: ISOSTRUCTURALISM AND POLYMORPHISM.. 1

P2. S.R. Niketić
ELUCIDATION OF THE STERIC AND ELECTRONIC EFFECTS IN
COORDINATION COMPOUNDS ON THE BASIS OF THEIR
CRYSTAL STRUCTURES.. 2

P3. D. Rodić
MAGNETIC STRUCTURES AND RELATIONSHIPS BETWEEN MAGNETIC AND
CRYSTAL STRUCTURE.. 8

ORAL PRESENTATIONS

S1. B. V. Prelesnik, Z. Tomić, B. Solaja
THE CRYSTAL AND MOLECULAR STRUCTURE OF 3d,28:6α,7α-DIEPOXY
-2-OXA-5α,10α-CHOLESTANE, C27H44O4.. 14

S2. S. Stanković, D. Lazar, D. Miljković, K. Gaši, R. Kovačević
AN UNUSUAL HYDROGEN BOND NETWORK IN CRYSTAL PACKING OF
3-METHOXY-16-OXIMINO-17α-BENZYL-17β-HYDROXY-ESTRA-
-1,3,5(10)-TRIENE... 15

S3. A. Kapor, B. Ribar, S. Rakić
ISOSTRUCTURALISM OF THE STEROID COMPOUNDS OF CORTISON
DERIVATES .. 16

S4. A. Valčić, V. Radojević, S. Nikolić
INFLUENCE OF CRYSTALLIZATION CONDITIONS OF AI ON THE SHAPE OF
THE CRYSTALLIZATION FRONT.. 17

S5. B. Čabrić, T. Pavlović, B. Žižić
A METHOD FOR PREPARATION CRYSTALS IN A CHAMBER FURNACE....................... 18

RELATIONSHIP BETWEEN UNIT CELL PARAMETERS AND COMPOSITION
OF TERNARY SPINELS ZnхMхSbхOх (M=Cr, Mn, Co, Ni)... 19

THE COMPARISON OF DIFFERENT COMPUTER PROGRAMS FOR RIETVELD
ANALYSIS OF X-RAY POWDER DIFFRACTION PATTERNS FOR SPINEL
ZnхMхSbхOх (M=Cr, Mn, Co, Ni).. 20
S8. S. Zarić, S. P. Niketić
INVESTIGATION OF THE GEOMETRY OF DINITROBIS-(AMINOCARBOXILATO)COBALTATE(III) ISOMERS ON THE BASIS OF THE KNOWN CRYSTAL STRUCTURES
21

SYNTHESIS AND CRYSTAL STRUCTURE OF Cu(II) COMPLEX WITH ACETONE NAPHTOILHYDRAZONE H₂[L(Cu(HL)₂NO₃)]₂C₂H₅OH
22

CRYSTAL AND MOLECULAR STRUCTURE OF THREENUCLEAR COMPLEX Cu₃Cu⁴(C₂H₆)₂Br₄ (HL=1-NAPHTOILHYDRAZONE ACETONE)
23

S11. D. Lazar, S. Stunković, J. Petrović, D. Miljković
COMPUTING AID DRUG DESIGN: 3-HYDROXY-18-METHYL-17-OXOSTRA-1,3,5(10)-TRIEN-16-ONE
24

S12. S. Đurić
AN INDICATOR FOR THE ADJUSTMENT OF AN X-RAY BEAM
25

S13. S. Janjić, S. Đurić
THE UNIT CELL FOR THAUMASITE FROM VLAOLE VILLAGE VICINITY (EAST SERBIA)
26

S14. B. Antić, M. Mitrić, D. Rodić
RELATIONS OF STRUCTURE AND MAGNETIC PROPERTIES IN SOLID SOLUTION OF YTTRIUM-ERBIUM SESQUIOXIDES
27

S15. D. Rodić, M. Mitrić, B. Prelesnik, A. Krenčević
THE STRUCTURE CHANGES OF MIXED TERBIUM-YTTRIUM GARNET Tb₂ₓYₓ₋₁ₓFe₂O₁₂ IN APPLIED MAGNETIC FIELD
28

TRANSPORT CHARACTERISTICS OF THE POLIMERIZED CONCRETES
32

SUBSTITUTION OF SODIUM IONS BY COPPER(II) IONS IN HYDRATED ZEOLITE A
33

CHARACTERIZATION OF THE QUASQuATERNARY AgTISbBiS₄ PHASE FROM THE AgS-Tl₂S-Sb₂S₃-Bi₂S₃ SYSTEM
34

VI
Similarity and dissimilarity between the crystallographic phenomena:
isostructuralism and polymorphism

Alajos Kálmán and Gyula Argay

Central Research Institute for Chemistry, Hungarian Academy of Sciences,
Budapest 114, P.O.Box 17, H-1525, Hungary

The governing principle of all kinds of molecular associations is the striving for
attainment of the maximum density of material by bringing the bumps of, in general,
amorphous molecules into the hollows of the adjacent molecules via the optimum
symmetry operations permitted within the seven crystal systems. Even the simplest
crystal is the product of infinite translations of identical molecules in three dimensions.
This is termed as a homomolecular association. Within this large class of associations
homochiral, heterochiral and achiral crystal structures are distinguished.

Strictly speaking we use the term molecular association when two or more
molecules form a crystal lattice via co-crystallization and the asymmetric unit of the
new lattice provides room for at least one molecule of each component. When the
properties of the individual components are very largely conserved in these intermediate
phases of A,B type, they are called "binary adducts".

Since Mitscherlich's discovery (1819) the isomorphism of crystals has been
interpreted in various, sometimes controversial ways. Recently Kálmán and coworkers
(1993) recommended the exclusive use of the term isostructural for organic crystals. In
addition, starting from the "main part" isostructuralism of cardenolides and other
steroids and using the results of Bernstein and coworkers (1987) they set up a
classification of the forms and degrees of isostructuralism exhibited by organic
molecules. From these analyses it was revealed that, beyond the highly isostructural
pairs there are similar crystal structures which are related only by relaxed packing
rules. They are termed as homeostructural pairs.

The different forms of polymorphism (conformational, electronically induced,
irreversible, pseudo, etc.) enable us to understand those molecular properties and
interactions which have influence on biological procedures. The differences between
the various polymorphs (at least dimorphs) of a compound manifest themselves as
differences in solubility, rate of dissolution, and vapour pressure. Such effect can be
very important in pharmaceutical applications, e.g. the tabletting behaviour of powders,
physically stable dosage forms and chemical stability are equally dependent on it. This
made X-ray diffraction (single crystal studies and powder diffractograms, as well)
indispensable in the scientific evaluation of different polymorphs of drugs.

Heteromolecular (binary) systems along with polymorphism may also exhibit
isostructuralism. Recently, Caira and Mohamed (1992) reported three solvates of
5-methoxysulfadiazine formed with (a) dioxane, (b) tetrahydrofuran and (c) chloroform.
These three clathrates are based on the common isostructural sulfamide host framework
with the solvent molecules occupying framework cavities.

Similarities and dissimilarities of these opposite phenomena are discussed.
Elucidation of the steric and electronic effects in coordination compounds on the basis of their crystal structures

S. R. Niketić

Department of Chemistry, University of Belgrade
Studentski trg 16, POB 550, YU-11001 Belgrade

INTRODUCTION

Understanding and explaining the factors which determine the structure (geometry) of molecules has been one of the main goals of the basic research in chemistry. For practical purposes it is convenient, but not always straightforward, to group these factors into steric (e.g., Pitzer strain, Baeyer strain, nonbonded interactions) and electronic (e.g., conjugation, hyperconjugation, donor-acceptor and π-interactions).

For structural studies chemists have at their disposal a variety of experimental and theoretical methods. The former are primarily used to collect structural data, and the latter provide ways to modeling and elucidating the individual types of effects (steric and electronic).

Coordination compounds are of particular interest in these studies since they provide many easily accessible examples of the structures which are markedly influenced by the interplay of steric and electronic factors. In addition, they offer excellent means for the systematic studies of steric and electronic effects by way of variation of their electronic and geometrical properties (e.g., by changing the central metal and donor atoms, respectively) down to “fine tuning” by varying the ligand substitution.

EARLIER WORK ON FORCE FIELD ANALYSIS

For many years, we have been developing a force field for the study of metal chelate ring conformations in coordination compounds. The approach proved to be very successful in predicting and explaining static and dynamic conformational properties of various trigaonal tris-bidentate complexes of cobalt(III) and chromium(III) with ethylenediamine, 2,3-diaminobutane, trimethylenediamine, and 2,3-diaminopentane rings. A similar approach attempted on aminocarboxylato chelates yielded much less reliable results. One of the reasons for these shortcomings may stem from the complexity of the force field in
terms of the number of parameters required for the treatment of aminocarboxylato complexes. Namely, even with the most simple potential functions (consisting of bonded and non-bonded terms as the primary atom atom interactions, and with angle bending and torsional terms as the corrections) the number of individual terms increases rapidly with the introduction of new atom types (see Table 1).

Table 1: Force field complexity increases with the introduction of new atom types. Columns 2-5 show bond-stretching, angle-bending, torsional, and nonbonded terms, respectively.

<table>
<thead>
<tr>
<th>Alkanes</th>
<th>C-H</th>
<th>C-C</th>
<th>C C C</th>
<th>C C</th>
<th>H...H</th>
<th>H...C</th>
<th>C...C</th>
<th>9 terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amines</td>
<td>N-H</td>
<td>N C-H</td>
<td>C N</td>
<td>N...H</td>
<td>+10 terms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-C</td>
<td>N C C</td>
<td>H N C</td>
<td>H N H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal-amine</td>
<td>M N</td>
<td>M N C</td>
<td>M N H</td>
<td>M N</td>
<td>M...H</td>
<td>M...C</td>
<td>+7 terms</td>
<td></td>
</tr>
<tr>
<td>complexes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal-glycine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+27 terms</td>
</tr>
<tr>
<td>complexes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>9</td>
<td>16</td>
<td>6</td>
<td>22</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A comparative geometrical analysis of all published crystal structures of aminocarboxylato complexes revealed, however, an other much more important cause for the failure of a simple force field approach in these cases. It is due to the specific electronic effects that operate in compounds with two or more coordinated carboxylate groups.

STRUCTURE CORRELATION HYPOTHESIS

A relationship between the crystallographically defined static representations of molecular structures and dynamic pictures of interest to stereochemical studies is established in the form of the *structure correlation hypothesis* advanced by Dunitz and his co-workers.
It permits a mapping of a reaction coordinate by observing gradual static deformations of a given structure over a large variety of crystalline frameworks.

In an attempt to gain some insight into the conformational flexibility of five-membered aminocarboxylato metal chelate rings we studied14-17 the distribution of ring conformations in the torsional subspace by the method of nonhierarchical K-means cluster analysis18,19 on a sample of 1177 rings from 560 crystal structures extracted from the Cambridge Structural Database System (CSDS)20 (Version 4.30). Instead of an expected continuous distribution of the points along the pseudorotational path, we observed a distinct clustering into four clusters representing two approximately enantiomeric pairs of chelate ring conformations: flattened and puckered λ and δ envelopes.14-17 This clustering pattern is not generally correlated with the nature of the individual rings, but it appears to be the result of the mutual influence of chelate rings and possibly the other ligands. This influence is recently described17,21,22 as anisotropic π-effect of \textit{cis}- and \textit{trans}-ligator pairs.

The anisotropic π-effect between two π-donors, such as two \textit{cis} or \textit{trans} coordinated carboxylate groups, manifests itself in a tendency of the ligand π-orbitals to adopt a mutual orientation in which the sharing of the same metal t_{2g} orbital is minimized. It is achieved through the change of the metal-oxygen torsional angle. Therefore, in cases of unfavourable mutual orientation of a pair of carboxylates, the chelate rings become puckered. Further details of this mechanism, in particular the relationship between the electronic configuration of the central metal atom and the anisotropic π-effect, is being studied in our laboratory.

Nitro Complexes

The structures with the coordinated nitro groups present another example of the mutual influence of the anisotropic π-bonding ligands. Previously it has been observed23 that the Co–NO$_2$ bond, in mixed nitro/aminocarboxylato complexes of Co(III), becomes shortened due to the \textit{trans} influence of the coordinated carboxylate group.

Our findings24 indicate that this effect may be quite general. We have investigated the distribution of the Co–NO$_2$ bonds in 40 crystal structures containing 188 coordinated NO$_2^-$ groups found in the CSDS20 as well as in 30 "non-organic" crystal structures containing 95 coordinated NO$_2^-$ groups obtained from Inorganic Crystal Structure Database (ICSD).25 The following regularities may be noted. The Co–NO$_2$ bond in the structures containing organic ligands is shorter if the \textit{trans} position contains COO$,^{\text{26}}$ NCS$^-$ or H$_2$O ligands, in comparison to the length of the Co NO$_2$ bond which has NH$_3$ or another NO$_2^-$ in the \textit{trans} position. The metal NO$_2$ bond lengthens with the increase in the number of coordinated NO$_2^-$ groups in both classes of nitro complexes. Again, the explanation may be sought in the \textit{trans} influence of the π-bonding ligands, but the full account of the structural details
is obtained if we accept the assumption on the existence of the anisotropic influence of the π-bonding ligands both in the cis as well as in the trans position.

A series of nitro-ammine complexes, [Co(NH₃)ₓ(NO₂)ₙ₋₄]²⁻ (x = 0, 2, 3, 4, 5), is particularly interesting in the study of the interplay between steric and electronic effects. Molecular orbital (EIIT, ZINDO, and STO-3G ab initio) calculations²⁶ clearly show the existence of anisotropic π-bonding of the M-NO₂ fragment, and a four-fold rotational barrier around the metal-ligand bond. Two nitro groups in either cis or trans disposition are expected to influence each other via the electronic effects. Force field calculations,⁶ on the other hand, show that the steric effects (essentially the O···O non-bonded interactions) are important in the cis-dinitro case, and practically absent between the ligands in the trans position.

Therefore, it appears that two opposing effects of approximately the same order of magnitude determine the stereochemistry of a cis-dinitro fragment in nitro-ammine complexes, [Co(NH₃)ₓ(NO₂)ₙ₋₄]²⁻ (x = 0, 2, 3, 4), as shown in Table 2.²⁶

<table>
<thead>
<tr>
<th>Steric factors:</th>
<th>Electronic factors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>O···O non-bonded interactions</td>
<td>Anisotropic cis π-effect</td>
</tr>
<tr>
<td>Coplanar NO₂ groups</td>
<td>Coplanar π* orbitals</td>
</tr>
<tr>
<td>favourable</td>
<td>unfavourable</td>
</tr>
<tr>
<td>Coplanar NO₂ groups</td>
<td>Coplanar π* orbitals</td>
</tr>
<tr>
<td>unfavourable</td>
<td>favourable</td>
</tr>
</tbody>
</table>

With the increase of the number of nitro groups around one metal center it becomes less possible to find their mutual orientation which is favourable both with respect to the steric and to the electronic requirements. This might be one of the reasons for the anomalous behaviour of hexanitro complexes, e.g., [Co(NO₂)₆]³⁺, with respect to their spectral and thermodynamic properties.⁴,⁵

BIS(ASPARTATO)COBALTATE(III) COMPLEXES

Out of all the entries on aminocarboxylato complexes retrieved from the CSDS we have singled out two papers²⁷,²⁸ each reporting on two crystal structures of bis(l-aspartato)cobaltate(III) complexes. These structures provide information on a total of eight crystallographically unique tridentate metal aspartato fragments. They are particularly useful in the study of concerted deformations which one of the two fused chelate rings exerts upon the other in
a conformational change. If the eight $M(\text{L-Asp})$ fragments are viewed in the correct order they reveal a continuous distortion pathway. Our force field calculations29 clearly indicate that it is not possible to simulate the distortion pathway for the $M(\text{L-Asp})$ fragment without taking into account the mutual anisotropic π-influence of all coordinated COO$^-$ groups in the $[M(\text{L-Asp})_2]^-$ as a whole. Some problems that we experienced previously30 attempting to reproduce the electronic spectra of the $[\text{Co(\text{L-Asp})}_2]^-$ geometrical isomers were due to the neglect of these anisotropic π-effects. A progress was made in later attempts31 to study the $[M(\text{L-Asp})_2]^-$ isomers by a combination of the ligand field analysis and the force field analysis. On the basis of these results32 we are currently working on an improvement of the force field for aminocarboxylato metal chelate complexes.

In conclusion I would like to emphasize that the $M(\text{L-Asp})$ fragment provides a very good example to deline just the kind of the electronic effects that we are pursuing. The effects are not localized on the ligand in question, but are transmitted from the other ligands in the coordination sphere through the metal d-orbitals viz. through the metal–ligand bonds.

ACKNOWLEDGEMENTS

The work described in this lecture has been a collaborative venture with my students and coworkers Dr. Snežana Zarić, Maja Ivković, Dragan Popović, Milan Črnogorac and others to whom I extend my thanks. I especially appreciate the help of Dr. Tonić Bačić-Žunić in providing the data from the ICSD. The project was financially supported by the Serbian Ministry of Science (Contract 0202). Computer resources were provided by the Computer Laboratory, University of Belgrade.

REFERENCES

10. S.R. Niketić, unpublished work.
26. S.R. Niketić, to be published.
29. S.R. Niketić, to be published.
Magnetic Structures and Relationships Between Magnetic and Crystal Structure

D. Rodić
Laboratory of Theoretical Physics and Physics of Condensed Matter, Institute of Nuclear Sciences "Vinića"

In this paper neutron and x-ray diffraction studies of magnetically ordered systems are briefly reviewed. The compatibility of crystal and magnetic structures is emphasized. The magnetic field influence on crystal structures is discussed. X-ray diffraction measurements of yttrium and rare earth iron garnets are done in zero and applied magnetic field. The magnetic field affects intensities of reflections, background and lattice constant. A possible mechanism for the first two effects is proposed. The lattice constant changes are ascribed to forced volume magnetostriction and the existence of free electrons.

1. Introduction

In the science of magnetism and magnetic materials all substances are divided in diamagnetics, paramagnetics and magnetically ordered. The diamagnetics possess only induced magnetic moments. The paramagnetics possess intrinsic disordered magnetic moments. In magnetically ordered systems magnetic moments of atoms which occupy the same crystallographic position are mutually related.

In the magnetically ordered crystals exists at least one atom with unpaired atomic electrons. This is specific for 3d- and 4f- elements and their compounds. The existence of magnetic order comes from the fact that the magnetic energy:

\[E = E_{\text{exchange}} + E_{\text{anisotropy}} + E_{\text{dipol}} \]

is minimized by an ordered alignment of magnetic moments [1], below the temperature at which \(kT \) overwhelms magnetic energy. These temperatures (\(T_{\text{Curie}} \) for ferromagnetics and \(T_{\text{Néel}} \) for antiferromagnetics) can be over 1000 K (for some 3d- metals and their oxides), but can also be very low- around 1 K (e.g. in rare earth sesquioxide). \(E_{\text{exchange}} \) is larger
and often much larger than the g anisotropy. The contribution of E_{dipol} is usually, except at very low temperatures, negligible.

The determination of magnetic structure (i.e., determination of size and orientation of magnetic moments respect to the crystal axis) is the first task in the investigation of magnetically ordered crystals. This task can be solved by: classical magnetic measurements of magnetization, magnetic anisotropy and magnetostriction; Moessbauer spectroscopy; x-ray diffraction of synchrotron radiation and neutron diffraction. The most usual opinion is that all these tools are rather limited in comparison with the neutron diffraction [1,2].

2. Neutron diffraction at magnetically ordered systems

Nuclear and magnetic scattering are typical for neutrons. Neutron having magnetic moment $-1.913\mu_B$ interacts with magnetic moments of crystals. The amplitude of nuclear scattering is given with:

$$F^N = \sum b'_\nu \exp[2\pi i(hx'_\nu + ky'_\nu + lz'_\nu)].$$ \hspace{1cm} (2)

where summing takes into account all atoms (of atomic amplitude b'_ν) with fractional coordinates (x'_ν, y'_ν, z'_ν) in elementary cell.

The amplitude of magnetic scattering is given with:

$$F^M = \sum f^M_\nu M_{hkl,\nu} \exp[2\pi i(hx'_\nu + ky'_\nu + lz'_\nu)].$$ \hspace{1cm} (3)

where summing takes into account all magnetic atoms (with magnetic form factor f^M_ν) in elementary cell. Vector $M_{hkl,\nu}$ depends on the scattering vector e_{hkl} and magnetic moment m'_ν:

$$M_{hkl,\nu} = m'_\nu - (e_{hkl} m'_\nu) e_{hkl}.$$ \hspace{1cm} (4)

The structure factor (for nonpolarized neutrons) is the sum of nuclear and magnetic structure factors [1,2].

Thousands of magnetic structures have been resolved by the use of neutron diffraction data. The simplest structures are collinear: ferro-, antiferro- and ferrimagnetic. The ferro- and simple collinear antiferro- appear only if magnetic atom occupies only one Wyckoff’s position.
Ferrimagnetic structures exist if magnetic atoms are distributed over two or more positions. Noncoinear structures usually appear in highly anisotropic systems. To this group belong weak ferromagnetic, umbrella, multiaxial and helicoidal structures [3].

Tremendous majority of magnetic structures are solved on the basis of the paramagnetic space group [3]. These solutions are nonexact because neglect the symmetry of magnetic moment which, strictly speaking, must be compatible with the symmetry of local position. The point group is a subgroup of the group of magnetic moment (a consequence of Curie's principle). Second, the lowering of the symmetry corresponds to the phase transition between para and ordered magnetic phase (according to Landau's theory).

The requirement for the exact solution of magnetic structures (i.e. compatibility of the local symmetry and the symmetry of the magnetic moment) leads to the requirement for the exact solution of crystal structures (i.e. compatibility of magnetic and crystal structures) in ordered magnetic phases.

3. X-ray diffraction at magnetically ordered systems and the magnetic field influence on crystal structure

X-rays interact with charge and magnetization density. The ratio of the charge scattering to the magnetic scattering intensity can be several orders of magnitude [4]. From that reason magnetic scattering can hardly be visible if the usual x-ray reflection overlaps magnetic reflection (ferromagnetics and ferrimagnetics). On the other hand, the appropriate choice of samples (e.g. antiferromagnetic NiO [5] and spiral Ho [4]) makes magnetic x-ray scattering observable with a synchrotron and, in good running conditions, with rotating anode source.

Usual x-ray diffraction measurements at magnetically ordered systems are performed to study magnetoelastic effects. Temperature dependence of lattice parameters of ferrimagnetic ReFe₂O₃ was investigated several times below room temperature [6] (and references therein). A general conclusion can be drawn from all these measurements. At room temperature ferrimagnetic garnets posses "cubic metric and rhombohedral symmetry" [7]. The rhombohedral structurss, space group $R3$, were found at low temperatures [8]. The visible effect - increase of rhombohedral angle
with the lowering of temperature can be described as diffuse phase transition. Strictly speaking this transition appears at T_c and only instrumental resolution of diffractometers, which is poor in the comparison with the size of effects, does not allow following of the effect at immediately below T_c.

There are no many data on magnetic field influence on crystal structure. Workers in the field usually study changes of crystal structure parameters e.g. lattice parameter and its thermal evolution.

X-ray diffraction experiment has been done on Dy-4XY alloy using superconducting electromagnet. The applied field changes volume fraction of coexisting ferro and spiral magnetic structures. The corresponding crystal structure in the spiral phase is hexagonal which distorts to the orthorhombic in ferro state [9,10].

4. X-ray diffraction at rare earth garnets in magnetic field

In order to investigate the magnetic field influence at crystal structure of magnetically ordered systems yttrium and rare earth iron garnets are chosen. Above T_c, which is about 560K for $Y_3Fe_5O_{12}$ and $Re_3Fe_5O_{12}$, these garnets crystallize in the space group $Ia3d$. The ferriions occupy 16a and 24d positions. $Y^{3+}(Re^{3+})$ and O^{2-} occupy 24c and general 48f positions, respectively.

Yttrium and rare earth iron garnets of the chemical formulae $Y_3Fe_5O_{12}$ and $Re_3Fe_5O_{12}$ ($Re=Sm,Gd,Tb,Dy$) are synthesized by coprecipitation of starting compounds (Fe_2O_3 and Y_2O_3 purity 99.99%) followed by sintering and resintering at 900 and 1380°C, respectively.

Diffraction measurements were done by using CuK$_{α1,2}$ radiation (40 kV and 80mA) in 2θ region 9°-135°. The data were collected in steps of 0.05° in 2θ and measurements lasted about 20 hours for each sample. In the second run same samples were measured in applied magnetic field B=0.1T, which was oriented along the scattering plane.

Main differences between the data obtained in the fields B=0 and B=0.1T are shown in Table I. The Rietveld's refinement does not show any significant differences between other crystal structure parameters.
Table I

Diffraction data and lattice constants of ReIG

<table>
<thead>
<tr>
<th>Garnet/ scale factors ratio</th>
<th>backgrounds ratio</th>
<th>lattice constants [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>YIG</td>
<td>2.2</td>
<td>12.3816(2) 12.3854(6)</td>
</tr>
<tr>
<td>SmIG</td>
<td>2.3</td>
<td>12.5319(4) 12.5378(6)</td>
</tr>
<tr>
<td>GdIG</td>
<td>1.9</td>
<td>12.4779(6) 12.4807(6)</td>
</tr>
<tr>
<td>TbIG</td>
<td>1.1</td>
<td>12.4443(6) 12.4433(6)</td>
</tr>
<tr>
<td>DyIG</td>
<td>2.9</td>
<td>12.4097(5) 12.4128(6)</td>
</tr>
</tbody>
</table>

The magnetic field affects total intensity of reflections and total intensity of background. We propose a possible mechanism of this effect. The existence of an applied magnetic field causes appearance of an electric field. The x-rays produce free electrons in investigated samples. Moving of free electrons in electric and magnetic field, due to the Lorentz’s force, makes their recombination with ions more difficult. The existence of enlarged number of free electrons changes electron density of the sample (which we see as the structural changes) and affects background. Except above mentioned reasons for the changes of crystal structure of YIG and ReIG, we also note: i) the magnetic field orients domains; ii) the forced volume magnetostriction (and maybe existence of free electrons) change lattice parameters, iii) the depth of x-ray penetration can be changed in the magnetic field.

5. Conclusion

Up to now investigations of crystal and magnetic structures were mainly led separately. The most researchers try to resolve magnetic structures by simply adding magnetic structure on the “known” crystal structure, even if it is very well known that magnetic structure lowers the symmetry of crystal structure. The exact knowledge of crystal structures of magnetically ordered compounds can be very great help in
magnetic structures investigations.

The investigations of crystal structure and its parameters in magnetic field is not a popular technique and not much is known about it problem. The experiments done on YIG and ReIG show strong magnetic field dependence of x-ray scattering and crystal structure parameters.

Acknowledgment

Help and discussions during experiments with M.Mitric, Institute "Vinča", are gratefully acknowledged.

References
THE CRYSTAL AND MOLECULAR STRUCTURE OF 3α,28:6α,7α-DIEPOXY-2-
-OXA-5α,10α-CHOLESTANE, C₃₇H₆₄O₁

B. V. Prelesnik, Z. Tomić, i B. Šolaja

Laboratory of Theoretical Physics and Condensed Matter Physics, Ni Vinča, Beograd,
Faculty of Chemistry, University of Belgrade

During the investigation of nucleophilic substitution of 6α,7α epoxydes (1) the
compound 3α,28:6α,7α-diepoxy-2-oxa-5α,10α-cholestane has been synthesized. Since NMR
spectra interpretation has ailed to recognize molecular structure in details, X-ray crystal
structure investigation has been performed in order to characterize its structural properties.

Crystal data: monoclinic, a=37.970(9) Å, b=5.991(2) Å, c=10.939 Å, β=94.38(8)°,
space group C2, Z=4, M, =416.58, D,,, =0.672 g/cm³, V=2481(3) Å³, λ(MoKα)=0.71079 Å,
µ(MoKα)=0.7 cm⁻¹, F(000)=932.

The crystal structure has been solved by direct methods and refined by full-matrix
least-squares to (at this moment) R=0.111.

The geometry of the molecule as well as conformations of steroidal nucleus and side
chain group seems reasonable.

(1) Bogdan Šolaja and Ljiljana Došen-Mićović, Transformations of some steroidal lactones
and study of nucleophilic substitutions of 6α,7α epoxides, J. Serb. Chem. Soc., 54 (12), 657-
AN UNUSUAL HYDROGEN BOND NETWORK IN CRYSTAL PACKING OF 3-METHOXY-16-oximino-17α-benzyl-17β-hydroxy-estro-1,3,5(10)-triene

S. Stanković, D. Lazar, D. Miljković*, K. Gašić*, R. Kovačević**
Institute of Physics, *Institute of Chemistry, **Institute of Biology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 NOVI SAD, Serbia, Yugoslavia

ABSTRACT. The asymmetric unit of the title compound, 3-methoxy-16-oximino-17α-benzyl-17β-hydroxy-estro-1,3,5(10)-triene, C26H31NO3, contains two molecules (I and II), which differ in the orientations of the C(3) methoxy groups. 17-Hydroxy and 16-oximino moieties are involved in the intramolecular N...H-O hydrogen bonds. At the same time, molecules I and II are linked by the additional intermolecular N(I)...H-O(2II) and O(3I)-H...N(II) hydrogen bonds forming dimers. These dimers form further columns along a-axis through O(2I)...H-O(3II) intermolecular hydrogen bonds.

The hydrogen bond network causes a difference of bond and torsion angles of β-hydroxy oximino moieties between two symmetrically independent molecules. This has been confirmed by molecular mechanics calculation on individual molecules I and II, leading to the same geometries for either molecule in their energy minimum state.
ISOSTRUCTURALISM OF THE STEROID COMPOUNDS OF CORTISON DERIVATIVES

Agnes Kapor, Bela Ribar and Srdjan Rakic
Institute of Physics, Faculty of Sciences,
Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Isostructural pairs or groups of compounds usually have very similar crystal unit cell parameters and belong to the same space group [1]. In order to test isostructuralism, we have compared the crystal structures of four compounds of the steroid type having the general bruto formula $C_{21}H_{20}+O_{3-4}s$ ($s = 0,1,2,6 \ t = 0,2 \ X = F$) and rather similar unit cell parameters (compound I: $a = 10.040(2)$ Å, $b = 23.649(2)$ Å, $c = 7.784(2)$ Å, $P2_12_12_1$ Fig.1).

\[
\begin{array}{cccc}
R_1 & R_2 & R_3 & R_4 \\
1 & \text{cortisone } C_{21}H_{20}O_6 & O & O & \text{CH}_2 & \text{OH} & \text{H} & \text{==} \\
2 & \text{7a-hydroxyprogesterone } C_{21}H_{20}O_3 & O & \text{H}_2 & \text{CH}_3 & \text{H} & \text{==} \\
3 & \text{tetrahydrocortisol } C_{21}H_{20}O_3 & \text{OH} & \text{OH} & \text{CH}_2 & \text{OH} & \text{H} & \text{==} \\
4 & \text{9a-fluorocortisol } C_{21}H_{20}O_6F & O & \text{OH} & \text{CH}_2 & \text{OH} & \text{F} & \text{==}
\end{array}
\]

Comparing the coordinates of the atoms belonging to the basic skeleton of the steroid C1 − C19, a possibility was noticed the transformation of the coordinates of the atoms of compound I into the coordinates of the corresponding atoms in the compound IV. In order to verify the isostructuralism, we have taken the coordinates of the atoms of the compound I as the initial parameters for $N = 1857$ observed reflexes measured on the crystals of the compound IV. We have performed three cycles of anisotropic refinement (SHELX76) and the difference Fourier map was calculated. The decrease of R-factors and the appearance of the maxima in the difference Fourier map, whose position corresponds to the coordinates of F atoms from the compound IV, have confirmed the isostructurality of the studied compounds.

In order to test the origins of the isostructuralism, we have performed the analysis of the molecular packing for all four compounds. Large similarity of packing was noticed for the compounds I, II and IV. The established isostructurality between the compounds I and IV could be ascribed to the same type of strong intermolecular hydrogen bond (O17 − H117...O21, O21 − H21...O3) while in the compounds II and III completely different network of hydrogen bonds is formed.

INFLUENCE OF CRYSTALLIZATION CONDITIONS OF Al ON THE SHAPE OF THE CRYSTALLIZATION FRONT

J. Valčić, V. Kadijević and S. Nikolić

Faculty of Technology and Metallurgy, Karnezieva 4, Belgrade.
Institute of Microelectronic Technologies and Single Crystals, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11 000 Belgrade, Yugoslavia

Properties and quality of a crystal depend on crystallization conditions very much. The study of dependence of the crystallization front shape on the crystallization conditions in the Al - (Zn, Fe, Si, Cu) system is presented in this paper.

Set of experiments was done using Bridgeman’s normal solidification method (vertical system). The ampoule with sample was moved upwards and downwards in the vessel. The solidification rate was considered to be equal to the sample velocity. The experiments were carried out within a wide range of growth rates from 3.61x10⁻³ cm/s to 8.71x10⁻² cm/s. Two different initial solute concentrations were used.

The increment in the growth rate changes the crystallization front shape from plane to cellular. Further increase in the crystallization rate caused the crystallization front shape transition from cell to dendrite.

The quantitative criterion was used to determine the critical crystallization rate value for plane to cellular front shape transition. Minimal crystallization rate used in series I resulted in planar crystallization front shape. Increase in growth rate caused the cellular growth. The development of cell structure up to transition to dendritic growth was studied in series II of experiments.
A METHOD FOR PREPARATION CRYSTALS IN A CHAMBER FURNACE

B. Cabrić*, T. Pavlović**, B. Zizić***

*Faculty of Sciences, P.O. Box 60, 34000 Kragujevac, Yugoslavia
**Faculty of Philosophy, P.O. Box 92, 18000 Niš, Yugoslavia
***Faculty of Physics, P.O. Box 550, 11000 Beograd, Yugoslavia

In order to prepare monocystals of group compounds [1], in a laboratory chamber furnace, we have designed an apparatus. Its main parts are: an electrorresistant chamber furnace, a heat exchanger, crucible, outer crucible and a continuously changeable transformer. The lower part of the crucible is a capillary which is considered to select one of the spontaneously formed grains from the other ones as to develop into a monocystal [2]. The procedure involves firstly an increase of the voltage until the substance in the crucible is completely melted. Then, an air stream is let to flow through the heat exchanger. At the beginning the air flow is weak but it is gradually increased so that the solidification front, which starts at the outer crucible bottom, moves upwards up to reaching the surface of the melt after several hours.

The rate of crystallization in each crucible can be adjusted by changing the cross-section of the air flow, which allows a simultaneous crystallization of several substances at different rates.

REFERENCES

RELATIONSHIP BETWEEN UNIT CELL PARAMETERS AND COMPOSITION OF TERNARY SPINELS Zn$_{x}$M$_{y}$Sb$_{0.4}$ (M = Cr, Mn, Co, Ni)

Andelka Ilić 1, Dejan Poleti 1, i Ljiljana Karanović 2

1 Faculty of Technology and Metallurgy, Karnezijska 4, 11000 Belgrade and 2 Faculty of Mining and Geology, Dušina 7, 11000 Belgrade, Yugoslavia

Spinels are a large group of natural and synthetic compounds with very diverse application in science and technology (Cr production, pigments, magnetic materials, catalysts, varistor ceramics). Well known structure of spinels (A)B$_2$O$_4$ consists of approximately cubic closest packing of O$^{2-}$ ions and cations in tetrahedral, (A), and octahedral, (B) positions. Different kind of substitutions are possible in (A) and (B) sites.

The spinels with formula Zn$_{x}$M$_{y}$Sb$_{0.4}$ (M = Cr, Mn, Co, Ni) have been prepared by solid state reaction at about 1100°C from appropriate oxides. The samples are examined by X-ray powder diffraction technique on a Philips PW 1710 automatic diffractometer using monochromatized Cu Kα radiation.

The unit cell parameters of prepared spinels linearly depend on percentage of transition metal, M. The linear equations obtained by regression analysis are follows (r is the correlation coefficient): for M = Co:
\[a(\bar{A}) = -0.015(3) \cdot y + 8.595(2) \]
(y=0.933; r=0.931)

for M = Ni:
\[a(\bar{A}) = -0.056(8) \cdot y + 8.595(4) \]
(y=0.933; r=0.974)

for M = Mn:
\[a(\bar{A}) = -0.092(3) \cdot y + 8.594(9) \]
(y=0.500; r=0.999)

for M = Cr:
\[a(\bar{A}) = -0.134(4) \cdot y + 8.594(2) \]
(y=0.778; r=0.998)

In order to check the stated dependence some spinels of more complex composition and general formula Zn$_{x}$M$_{y}$Sb$_{0.4}$ have been prepared in the same way. In Table 1 the experimental unit cell parameters of these spinels are given with the values calculated by the assumption that the contribution of each ion is additive. The agreement between experimental and calculated values is good. It gives the opportunity to predict the unit cell parameters of even more complex spinels.

<table>
<thead>
<tr>
<th>Spinel formula</th>
<th>(a(\bar{A}))</th>
<th>(a_{\text{calc}}(\bar{A}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn${1.633}$Co${0.350}$Ni${0.350}$Sb${0.667}$O$_4$</td>
<td>8.5693(9)</td>
<td>8.5700</td>
</tr>
<tr>
<td>Zn${1.815}$Cr${0.389}$Mn${0.389}$Sb${0.407}$O$_4$</td>
<td>8.5115(8)</td>
<td>8.5069</td>
</tr>
<tr>
<td>Zn${1.724}$Cr${0.387}$Ni${0.350}$Sb${0.537}$O$_4$</td>
<td>8.532(1)</td>
<td>8.5375</td>
</tr>
<tr>
<td>Zn${1.676}$Cr${0.181}$Ni${0.537}$Sb${0.506}$O$_4$</td>
<td>8.5370(7)</td>
<td>8.5403</td>
</tr>
<tr>
<td>Zn${1.724}$Cr${0.389}$Ni${0.350}$Sb${0.577}$O$_4$</td>
<td>8.5190(4)</td>
<td>8.5230</td>
</tr>
<tr>
<td>Zn${1.733}$Cr${0.596}$Ni${0.163}$Sb${0.408}$O$_4$</td>
<td>8.4991(6)</td>
<td>8.5057</td>
</tr>
</tbody>
</table>

In accordance with our previous results (D. Poleti, D. Vasović, Lj. Karanović, Z. Banković, J. Solid State Chem., in press) the same cation distribution is expected in all prepared spinels, i.e. the tetrahedral sites are occupied exclusively by Zn$^{2+}$ ions.
THE COMPARISON OF DIFFERENT COMPUTER PROGRAMS FOR RIETVELD ANALYSIS OF X-RAY POWDER DIFFRACTION PATTERNS FOR SPINEL \(\text{Zn}_{x}^{1.4} \text{Ni}_{0.933} \text{Sb}_{0.667} \text{O}_{4} \) (\(\text{M} = \text{Mn}, \text{Cr}, \text{Co}, \text{Ni} \))

Irena Petrović*, Ljiljana Karamović**, i Dejan Poleti**

* Crystallographic Laboratory, Faculty of Mining and Geology, University of Belgrade, Djušina 7, 11000 Belgrade
** Department of General and Inorganic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, P.O. Box 494, 11001 Belgrade

The existence of different computer programs for the Rietveld analysis of X-ray powder diffraction patterns requires a) the comparison of programs and consideration of conveniences and inconveniences of them, b) the investigation of different strategies in crystal structure refinement and c) the estimation of accuracy and spread of values found by different programs. The structure of spinel \(\text{Zn}_{1.4}^{1.4} \text{Ni}_{0.933}^{0.933} \text{Sb}_{0.667}^{0.667} \text{O}_{4} \) has been refined using programs WRYET-2, DBWS-9006, LHPMB-93.06 and FULLPROF-2.2 (PC-versions).

Crystal data and X-ray powder diffraction data are listed in Table 1 and R-values obtained with different versions of Rietveld's program for rough and smoothed data in Table 2.

Table 1. Crystallographic data for spinel \(\text{Zn}_{1.4}^{1.4} \text{Ni}_{0.933}^{0.933} \text{Sb}_{0.667}^{0.667} \text{O}_{4} \)

<table>
<thead>
<tr>
<th>Diffractometer</th>
<th>FW1710</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray tube</td>
<td>Cu LFF 40KV 30mA</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>1.5405, 1.5443</td>
</tr>
<tr>
<td>Profile range (°2θ)</td>
<td>10-120</td>
</tr>
<tr>
<td>Step width (°)</td>
<td>0.02</td>
</tr>
<tr>
<td>Step time (s)</td>
<td>10</td>
</tr>
<tr>
<td>Peak range (number of FWHM)</td>
<td>6.3</td>
</tr>
<tr>
<td>Number of observation</td>
<td>5500 (4608)*</td>
</tr>
<tr>
<td>Space group</td>
<td>Fd3m</td>
</tr>
<tr>
<td>a (Å)</td>
<td>8.5368(1)</td>
</tr>
<tr>
<td>V (Å³), Z</td>
<td>622.14(3), 8</td>
</tr>
<tr>
<td>(\overline{M}_r)</td>
<td>291.50</td>
</tr>
<tr>
<td>(D_x) (g/cm³)</td>
<td>6.222</td>
</tr>
<tr>
<td>(F(000))</td>
<td>1073</td>
</tr>
</tbody>
</table>

* WRYET-2

Table 2. Agreement indices for spinel \(\text{Zn}_{1.4}^{1.4} \text{Ni}_{0.933}^{0.933} \text{Sb}_{0.667}^{0.667} \text{O}_{4} \)

<table>
<thead>
<tr>
<th></th>
<th>WRYET-2*</th>
<th>DBWS-9006</th>
<th>LHPMB-93.06</th>
<th>FULLPROF-2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{exp})</td>
<td>5.59</td>
<td>5.61</td>
<td>5.77</td>
<td>5.77</td>
</tr>
<tr>
<td>(R_p)</td>
<td>13.57</td>
<td>14.11</td>
<td>9.99</td>
<td>8.26</td>
</tr>
<tr>
<td>(R_w)</td>
<td>17.75</td>
<td>18.63</td>
<td>12.92</td>
<td>10.84</td>
</tr>
<tr>
<td>(R_B)</td>
<td>7.22</td>
<td>7.23</td>
<td>4.55</td>
<td>4.28</td>
</tr>
<tr>
<td>(R_F)</td>
<td>4.04</td>
<td>3.94</td>
<td>2.95</td>
<td>3.02</td>
</tr>
<tr>
<td>(N)</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

* Smoothed data
INVESTIGATION OF THE GEOMETRY OF DINITROBIS(AMINOCARBOXYLATO)COBALTATE(III) ISOMERS ON THE BASIS OF THE KNOWN CRYSTAL STRUCTURES

Snežana Zarić and S.R. Niketić

Chemistry Department, University of Belgrade,
Studentski trg 16, FOB 550, YU-11001 Belgrade

Dinitrobis(aminocarboxylato)cobaltate(III) complexes have been synthesized with various amino acids (1). Only four out of the five theoretically possible geometrical isomers were isolated irrespective of the amino acid used in any of the syntheses. For the four isolated geometrical isomers crystal structures are known with several amino acids.

Recently the existence of the electronic π-effect was described. This effect was shown (2) to account for the difference in the conformations of the five-membered metal-aminocarboxylato chelate rings as well as for the differences in the thermodynamic stabilities.

In this work the electronic π-effect is demonstrated on the variations in metal-ligand bond lengths in the crystal structures of dinitrobis(aminocarboxylato)cobaltates(III). The position and mutual orientations of the π-bonding ligands were considered. Due to the anisotropy of the π-bond between carboxylato oxygen or the nitrogen from a nitro group and the cobalt atom, the M-O and M-N bonds are influenced by the ligand in the trans-position. Moreover, if the trans-ligand is π-bonding, then its orientation also influences the corresponding metal-ligand bond length.

SYNTHESIS AND CRYSTAL STRUCTURE OF Cu(II) COMPLEX WITH ACETONE NAPHTHOYLHYDRAZONE III., [Cu(III)I(NO)3]C2H5OH

B.V. Prelesnik, Z. Tomic, V. Leovac and S. Yu. Chundak

Laboratory of Theoretical Physics and Condensed Matter Physics, NI "Vinca", Beograd, Institute of Chemistry, Novi Sad, Faculty of Chemistry, University of Uzhgorod, Ukraine

By the reaction of hot Et/Me2CO solutions of Cu(II) nitrate and acetone 1-naphtoyleydrazone (HL), mixture of pale (in the excess) and dark green crystals was obtained. On the basis of x-ray structure analysis it has been found that pale green crystals have \textit{trans,trans}[Cu(HL)2(NO3)2] configuration (1).

In this communication results of the crystal structure analysis of dark green crystals having formula \([\text{Cu(HL)(I)}\text{NO}_3]\text{C}_2\text{H}_5\text{OH}\), as determined by the analysis itself, are presented. Fundamental crystallographic data are: orthorhombic, \(a=14.335(4)\ \text{Å}, \ b=20.695(5)\ \text{Å}, \ c=10.445(3)\ \text{Å}\), space group \(\text{Pn}2_1_\text{c}2, \ V=3099(1)\ \text{Å}^3, \ M_\text{r}=417.87, \ \lambda(\text{MoK}\alpha)=0.71073\ \text{Å}, \ \mu(\text{MoK}\alpha)=14.50\ \text{cm}^{-1}\).

The structure was solved by heavy atom methods and refined by full-matrix least squares to \(R=0.0452\) and \(R_w=0.0501\).

The most interesting characteristics of the structure of complex are represented by the shape of the coordination polyhedron around the metal atom and by the electron charge distribution in the molecule. The coordination number of the central atom may be described by 5+1, where the first coordination sphere is built up by pairs of oxygen and nitrogen atoms belonging to two five-membered chelate rings and the oxygen atom from nitrate group. The second coordination sphere is represented by second oxygen atom belonging to the nitrate group. The polyhedron is strongly deformed geometrical frame, the deformation being partially recognized as steric influence of other groups of atoms in the molecule.

Five membered chelate rings are almost planar, but there are evident differences of their corresponding bond lengths. These differences are ascribed to deprotonation in one of chelate rings, so the commencing dilemma if we are dealing with Cu(II) or Cu(I) complex has been resolved at the final stage of crystal structure analysis and confirmed by measurements of magnetic susceptibility of the powdered substance.

CRYSTAL AND MOLECULAR STRUCTURE OF THREENUCLEAR COMPLEX

\[\text{Cu}_3\text{Cu}^{II}(HL)_2\text{Br}_4 \text{ (HL} = \text{naphtoylhydrazon acetone)} \]

Agneš Kapor\(^a\), Bela Ribar\(^a\), Gyula Argay\(^b\), Alajos Kálmán\(^b\), Vukadin Leovac\(^c\) and S.Yu.Chundak\(^c\)

\(a \) Institute for Physics and Chemistry PMF, Novi Sad, Yugoslavia
\(b \) Central Research Institute for Chemistry, HAS, Budapest, Hungary
\(c \) Faculty of Chemistry, University of Uzhhorod, Ukraine

Monocrystals of the complex were obtained by the slow evaporation of the ethanol-acetone solution of \(\text{CuBr}_2 \) and 1-naphtoylhydrazon acetone. Dark green prismatic crystals belong to triclinic system \(P1 \) with unit cell parameters \(a = 7.510(1)\,\text{Å}, b = 9.700(1)\,\text{Å}, c = 11.570(1)\,\text{Å}, \alpha = 99.38(1)°, \beta = 106.20(1)°, \gamma = 91.49(1)°, Z = 2, V = 796.4(2)\,\text{Å}^3, D_c = 2.007\,\text{Mg} \text{m}^{-3}, M_r = 481.40, F(000) = 467.\)

The structure was solved by the direct method using the program SHELXS86 and refined by SHELX76 till the final \(R \) factor \(R = 0.0509, R_w = 0.0411, w = 2.3039/\sigma^2(F), N = 2954, NP = 237, S = 0.318.\)

\(\text{Cu}^{II} \) has octahedral environment of two bidentat \((N, O) \) molecules of 1-naphtoylhydrazon acetone in the equatorial plane and two bromide ions in axial positions. The atoms of \(\text{Cu}^{II} \) are located in the trigonal planar environment built by two bridging bromides which relate connect \(\text{Cu}^{II} \) atoms and the brom ion from the octahedral environment of \(\text{Cu}^{II} \) (Fig.1).

Infinite chains along crystallographic \(b \) direction are formed. The chains are connected by weak Van der Waals contacts \((\text{Br}3...N2^* = 3.427(5)\,\text{Å}, \text{Br}3...H2^* = 2.829(72)\,\text{Å}, ^* -1 + X, Y, Z) \) and form layers parallel to \(ab \) plane.
COMPUTING AID DRUG DESIGN: 3-HYDROXY-18-METHYL-17-OXOESTRA-
-1,3,5(10)-THIEN-16-ONE

D. Lazar, S. Stankovic, J. Petrovic and D. Miljkovic

aInstitute of Physics, Faculty of Sciences, Novi Sad, Yugoslavia
bInstitute of Chemistry, Faculty of Sciences, Novi Sad, Yugoslavia

In order to obtain estrogen type compounds with antiestrogen activity, we started with the examination of compounds with the hetero D-ring and their D- and C,D-seco derivatives. Namely, it is known that estrogen type estranes with D-hetero and D-seco ring loose estrogen activity, while very few data concerning their antiestrogen activity are available. To simplify the synthesis of compound for which the antiestrogen behaviour could be supposed (according to our assumption the compound should have the conformation of tamoxifen) we used computing aid drug design. Starting with the crystal structure of 3-hydroxy-18-methyl-17-oxoestra-
-1,3,5(10)-triien-16-one some D- and C,D-seco derivatives of this compound are designed by the molecular mechanics and then their conformations compared to the tamoxifen conformation.
AN INDICATOR FOR THE ADJUSTMENT OF AN X-RAY BEAM

S. Djurić
Faculty of Mining and Geology,
11000, Belgrade, Djušina 7, Yugoslavia

In order to optimize centering and the adjustment of cameras, goniometer or other instruments, an indicator of X-rays is designed.

The principle of this indicator is based on a known property of zinc sulphide doped by copper (1:10000) to produce the light depending on intensity of X-rays.

A piece of ZnS fluorescent screen is mounted in front of a CdS photoresistor, whose resistance depends on light and both, the screen and photoresistor are set in a black foil or paper. An amplifier by FE transistor is set close to the photoresistor. This transistor amplifier is a part of a bridge, which measures the resistance by an analogue microampermeter up to 100 μA (Fig. 1.).

The use of analogue instrument instead a fluorescent screen for cameras, goniometer and other instruments for adjustment to the X-ray source is much more convenient then the adjustment performed by observation an intensity of a spot on the fluorescent screen in darkness. In the same time, it is less dangerous.

![Circuit diagram of an X-ray indicator](image)

Fig. 1. Circuit diagram of an X-ray indicator
THE UNIT CELL FOR THAUMASITE FROM VLAOLE VILLAGE VICINITY
(EAST SERBIA)

Svetislav Janjić & Stevan Djurić

* Institute for Copper, 19210 Bor, Avnoja 35, Yugoslavia
1 Faculty of Mining and Geology, Univ. of Belgrade, 11000 Belgrade,
Djušina 7, Yugoslavia

For thaumasite, CaCO₃CaSiO₃CaSO₄14.5 H₂O, the rare
mineral found in E. Serbia, described by S. Janjić et al (1)
the hexagonal unit cell was calculated.

From X-ray diffraction powder pattern up to 2θ = 90° of
relatively pure mineral 77 reflections was collected. Only
six reflections whose intensities was less than 1% could not
be indexed to the thaumasite reflections. The refinement of
the unit cell was calculated by a least square method from
all of rest 71 reflections. Some starting indexes was used
from the literature.

Comparative values for the unit cell for thaumasite
from Vlaole and data from literature, are given in the table
below:

<table>
<thead>
<tr>
<th>Vlaole</th>
<th>Lit. 3</th>
<th>Lit. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₀(Å)</td>
<td>11.038(2)</td>
<td>10.992</td>
</tr>
<tr>
<td>c₀(Å)</td>
<td>10.384(3)</td>
<td>10.311</td>
</tr>
<tr>
<td>V₀(Å³)</td>
<td>1095.6(6)</td>
<td>1078.9</td>
</tr>
</tbody>
</table>

Small differences between various thaumasites derives
on differences in chemical compositions. Some of this in the
literature contains Na₂O, K₂O, Cl, TiO₂ and MgO; but
thaumasite from Vlaole contains more Al₂O₃ than others.

References:

(1) Janjić, S., Živković, P. & Bugarski, P.

(2) Knill, Min. Magaz. 32, 416 (1960); JCPDS card # 25-128

(3) Font-Alba, Min. Magaz. 32, 657 (1960)

(4) "Minerali" Tom III. Taumasit; Nauka, (1972) Moskva
Relations of Structure and Magnetic Properties in
Solid Solutions of Yttrium-Erbium Sesquioxides

B. Antić, M. Mitrić and D. Rodić
Institute of Nuclear Sciences "Vinča", Belgrade, Yugoslavia

The solid solutions of yttrium-erbium sesquioxides are diluted magnetic semiconductors (DMS) of \(Y_{2-x} RE_x O_3 \) type (RE=rare earth). Some new properties of these materials are important for fundamental researches as well as in applications.

The knowledge of crystal structure is the basis for understanding magnetic properties of the diluted magnetic semiconductors. Some structure and magnetic properties of \(Y_{2-x} \text{Er}_x O_3 \), mutually related, are given in the present work.

The crystal structure of \(Y_{2-x} \text{Er}_x O_3 \) were refined by the Rietveld method in the space group Ia3 and structure type C-MnO, The refined values of occupancies show random distribution of Er\(^{3+}\) ions over two nonequivalent crystallographic sites, Bb and 24d. This type of distribution was confirmed by magnetic measurements - the gram ion susceptibilities at room and liquid nitrogen temperature are independent of magnetic ion concentration.

The random crystallographic distribution and random distribution of magnetic ions in the frame of both cation sites would lead to the linear behavior of Curie-Weiss paramagnetic temperatures versus magnetic ion concentration-\(\Theta(x) \). The observed nonlinear \(\Theta(x) \) dependence is a consequence of magnetic ions clusterisation in both cationic sites (microscopic distribution) for \(x \leq 0.40 \).

Crystallography data enables understanding of magnetic moment values and superexchange interactions. Magnetic susceptibility data, together with obtained types of magnetic ions, distributions and their surroundings give a possibility for the calculation of the effective exchange integral.

References:
THE STRUCTURE CHANGES OF MIXED TERBIUM-YTTRIUM GARNET \(\text{TB}_{2.5} \text{Y}_{0.5} \text{Fe}_{5} \text{O}_{12} \) IN APPLIED MAGNETIC FIELD

D. Rodič, M. Mitrić, B. Prelesnik, A. Kremenović
Laboratory of Theoretical and Physics of Condensed Matter,
Institute of Nuclear Sciences "Vinča", P.O.Box 522, Belgrade
*Faculty of Mining and Geology, Belgrade, Yugoslavia

The x-ray diffraction experiments on mixed terbium-yttrium garnet \(\text{TB}_{2.5} \text{Y}_{0.5} \text{Fe}_{5} \text{O}_{12} \) were done in applied magnetic field \(B \approx 0.1 \) T. Before the x-ray measurements in the magnetic field the domains were oriented in the same field. The intensities of reflections and background strongly depend on the orientation of the applied field against scattering plane. The positions of reflections also show dependence of the orientation of the applied field. The observed phenomena points to the vector's nature of the structure amplitude and the lowering of the symmetry in the magnetic field.

1. Introduction

Above \(T_c \), which is about 560K for \(\text{YFe}_{5} \text{O}_{12} \) and \(\text{REFe}_{5} \text{O}_{12} \) garnets crystallize in the space group Ia3d. At room temperature ferrimagnetic garnets possess cubic metric and rhombohedral symmetry [1]. The last statement comes from the following facts: i) below \(T_c \) magnetic structure is ferrimagnetic, collinear, and all magnetic moments are oriented along body diagonal (in pseudo cubic cell); ii) according to the Curie's principle and the Landau's theory of phase transitions, below the phase transition at \(T_c \) the symmetry of garnets is lower (rhombohedral) than in the paramagnetic phase; iii) all known diffraction measurements of \(\text{Y(RE)IG} \) at room temperature and above it show presence of (pseudo) cubic structure. The rhombohedral structures, space group \(\text{R3} \), were found at low temperatures (e.g. [2]). Up to our best knowledge, only \(\text{TbIG} \) has been described once in \(\text{R3} \) group at room temperature but with lattice constants and atomic parameters which can be recalculated to correspond to the cubic space group \(\text{Ia3d} \) [2].

The magnetostriction is mechanism which lowers the symmetry of magnetically ordered phase. In order to see magnetostriction effects in the mixed terbium-yttrium iron garnet \(\text{TB}_{2.5} \text{Y}_{0.5} \text{Fe}_{5} \text{O}_{12} \), we have measured
x-ray diffraction in applied magnetic field of 0.1T.

2. Experimental

\(\text{Tb}_{2.5}Y_{0.5}Fe_{5}O_{12} \) is synthesized starting by coprecipitation of materials which corresponds to the formula: \(2.5\text{Tb}_{2}O_{3} \cdot 0.5Y_{2}O_{3} \cdot 5\text{Fe}_{2}O_{3} \) by the method described elsewhere [3]. The obtained mixture was pressed into pellets under the pressure of 1.5ton/cm² and sintered at 900°C for 10 hours. The obtained product was crashed, pressed under the same pressure and finally resintered at and 1380°C for 12 hours.

In order to allow free orientation of domains in the magnetic field \(\text{Tb}_{2.5}Y_{0.5}Fe_{5}O_{12} \), sample was put in distilled water to form mud. This mud was entered in magnetic field of 0.1T and then dried at 150°C. The line forces of the field passed through the entire sample.

Diffraction measurements on the sample in the field were done by using CuKα2 radiation (40 kV and 80mA) in 2θ region 9-86°. The data were collected in steps of 0.05° in 2θ and measurements were lasted 20 hours for each orientation of the magnetic field versus scattering plane. In the first run, field was oriented along the direction x-ray source -detector. In the next runs field (and the sample which was immobile versus field) were oriented at angles π/2, π and 3π/2 versus orientation in the first run.

3. Results and Discussion

Table I. Diffraction, crystal and atomic data of \(\text{Tb}_{2.5}Y_{0.5}Fe_{5}O_{12} \) obtained from the Rietveld’s refinement [4-6].

<table>
<thead>
<tr>
<th>Angle (k₀,k₁), B</th>
<th>0</th>
<th>π/2</th>
<th>π</th>
<th>3π/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale factor</td>
<td>4.7 \times 10^{-9}</td>
<td>4.7 \times 10^{-9}</td>
<td>5.4 \times 10^{-9}</td>
<td>7.1 \times 10^{-8}</td>
</tr>
<tr>
<td>Total intensity of reflections</td>
<td>9.3 \times 10^{5}</td>
<td>9.4 \times 10^{5}</td>
<td>9.9 \times 10^{5}</td>
<td>4.6 \times 10^{6}</td>
</tr>
<tr>
<td>Total intensity of refl. (420)</td>
<td>2.4 \times 10^{4}</td>
<td>4.6 \times 10^{3}</td>
<td>3.5 \times 10^{3}</td>
<td>2.6 \times 10^{3}</td>
</tr>
<tr>
<td>Background</td>
<td>1.0 \times 10^{6}</td>
<td>1.0 \times 10^{6}</td>
<td>1.1 \times 10^{6}</td>
<td>1.1 \times 10^{6}</td>
</tr>
<tr>
<td>a [Å]</td>
<td>12.4264(13)</td>
<td>12.4227(9)</td>
<td>12.4185(9)</td>
<td>12.4379(4)</td>
</tr>
<tr>
<td>Fract. coordinates x</td>
<td>-0.018(4)</td>
<td>-0.038(3)</td>
<td>-0.037(3)</td>
<td>-0.0304(6)</td>
</tr>
<tr>
<td>y</td>
<td>0.055(4)</td>
<td>0.057(4)</td>
<td>0.057(3)</td>
<td>0.0567(8)</td>
</tr>
<tr>
<td>z</td>
<td>0.153(4)</td>
<td>0.155(4)</td>
<td>0.157(3)</td>
<td>0.1522(8)</td>
</tr>
</tbody>
</table>

29
The R, Rp and Rwp factors were in the intervals 0.009-0.04, 0.02-0.04, 0.02-0.06, respectively.

Fig. 1. X-ray diffraction patterns of T2$_2$Y$_{0.8}$Fe$_{0.5}$O$_{12}$ in the fields a) II/2 and b) 3II/2 (see text).
Main differences between the data obtained in the different field orientations are shown in Table I. All Rietveld’s refinements were done by using 122 reflections and 20 varied parameters.

The most interesting effect is the enhancement of diffraction for an order of magnitude at the field orientation “3π/2". The magnetic field of the certain orientation enlarges diffraction! For a possible explanation of this phenomenon, bearing in mind that magnetic field orients domains, we note that the polycrystalline sample in favorable orientation of the magnetic field becomes close to a single crystal or a perfect crystal. The nature of the entire observed effect seems to be complex because x-ray produce free electrons which move in magnetic field producing also additional electric field. This can lead to the decrease of recombination of free electrons with ions. Thus, occurred structure missis electrons and it is ordered in the magnetic field. The existence of electric and magnetic field affect the crystal structure parameters.

From the lattice constant differences the strong forced volume magnetostriction [7] with order of 10^{-4} is deduced . The above differences together with the intensity differences speak in favour of the lowering of symmetry, what is an expectable effect.

4. Conclusion

The differences of intensities and lattice constants, which depend on the magnetic field orientation versus scattering plane, point to the vector’s nature of the structure amplitude in this experiment. These differences correspond to the lowering of symmetry, which is a consequence of magnetostriction and a complex behaviour of the sample under the influence of x-rays, magnetic and induced electric field.

References
Transport Characteristics of the Polymerized Concretes

Vladan Jovović, Ljiljana Mašković, Đivko Ćirić and Bratislav Tošić

a) Institute of Physics, Faculty of Sciences, Trg D.Obrađovića 4, 21000 Novi Sad, Yugoslavia
b) Faculty of Technical Sciences, Zrenjanin, Yugoslavia
c) Faculty of Technical Sciences, Novi Sad, Yugoslavia

We analyze the transport coefficients of mass - heterogeneous structure. One typical example is the polymerized concrete. It is known that such heterogeneous mixtures do not possess translationally invariant structure. For this reason they can not be analyzed by the application of the theoretical methods common to the crystals. We shall study here the diffusion coefficient of the polymerized concrete as the fundamental transport parameter. Once it is determined one can use well known expressions to relate it to the coefficient of thermal conductivity.

The theoretical analysis of the transport coefficients of polymerized concrete as an example of heterogeneous structures was performed by the combination of various approaches. We have first performed the microtheoretical analysis by the Green's function methods which lead to the analytical form of the diffusion coefficient of the phonon gas in the concrete. Since the concrete is built of inequal molecules, the diffusion coefficient will depend on the distribution of molecular masses. In order to obtain the final expression for the diffusion coefficient, it is necessary to perform the second part of the analysis, i.e. to average the microtheoretical expression over the dynamical probability for the mass distribution:

\[W(y) = \frac{C}{\bar{T}} y^{-\alpha} \sqrt{\bar{T}T} \quad \alpha \in [0, \infty] \]

Here \(T_r = 0/k_B \) where \(\theta_r \) is the monomer bond energy in the crystal.

The analysis performed has shown that both diffusion coefficient and thermal conductivity coefficient of the heterogeneous structure decrease with the temperature increase. Diffusion coefficient follows \(T^{-1/2} \) law:

\[D(T) = \frac{N h}{2k_B} \sqrt{\frac{T_c}{T}} \]

where \(\mu \) is the total mass of the structure and \(N \) is the total number of the molecules. Thermal conductivity coefficient decreases much faster, i.e.

\[\lambda \sim T^{-3/2} \]

Since above results agree well with the empirical data, one can say that the proposed method can have broader application in the theoretical study of physical properties of mass - heterogeneous structures.
SUBSTITUTION OF SODIUM IONS BY COPPER(II) IONS IN HYDRATED ZEOLITE A

1 Faculty of Technology and Metallurgy, Kamenicka 4, 11000 Belgrade,
2 Faculty of Mining and Geology, Dušina 7, 11000 Belgrade,
3 Institute of Nuclear Sciences - Vinca, PO BOX 522, 11001 Belgrade

Physico-chemical properties of a given type of zeolite depend to a large extent on the type of counter ions present in the microporous aluminosilicate framework. This is especially true when the ions are those of transition metals.

In view of the use of zeolites as catalysts, it has been known that the copper(II)-substituted zeolites exhibit very good catalytic activity (oxidation of CO and propylene, cyclodimerization of butadiene, etc.). In that context the possibilities of exchanging sodium ions by copper(II) ions in zeolite A (Na₂O·Al₂O₃·2SiO₂·4.5H₂O) has been examined. Namely, according to our knowledge it has not been possible so far to accomplish that particular ion exchange in a 100% degree since a destruction of the sodalite crystal lattice occurred.

In a series of experiments carried out in very dilute solutions of copper(II) sulphate we have succeeded, by varying the m(A)/V(CuSO₄) ratio, in achieving different cation exchange degrees (10-100%) in zeolite A, while avoiding the destruction of the sodalite lattice. Typical powder diffractograms of the obtained products are shown in Fig. 1.

In view of the different exchange degrees achieved, the water content and the unit cell parameter of the products have been determined. It is seen that the increase of the exchange degree is accompanied by an increase of the zeolite A water content (this being a consequence of exchanging a larger by a smaller ion), while the cell parameter decreases.

Figure 1. Powder diffractograms of some Cu-exchanged zeolite A samples.

Figure 1 shows the diffractograms of some Cu-exchanged zeolite A samples.

On the basis of the intensity change of the diffraction lines it is possible to make an assumption regarding the position of the Cu(II) ions in the sodalite lattice: Cu(II) ions are partly located in the centers of β-cavities.
CHARACTERIZATION OF THE QUASITERTARY $\text{Ag}_2\text{SbS}_3\text{S}_4$ PHASE
FROM THE $\text{Ag}_2\text{S}-\text{Ti}_2\text{S}-\text{Sb}_2\text{S}_3-\text{Bi}_2\text{S}_3$ SYSTEM

I. Grzetic1, L. J. Karanovic1, C. Renkenberger2, I. W. Eyssel2

(1) Faculty of Mining and Geology, University of Belgrade,
(2) Geowissenschaftliche Fakultät der Universität Heidelberg,
Heidelberg

A B S T R A C T: The experimental synthesis of the complex geological systems such as $\text{Ag}_2\text{S}-\text{Ti}_2\text{S}-\text{Sb}_2\text{S}_3-\text{Bi}_2\text{S}_3$ provides us with valuable information on the phase relations existing in such complex and heterogeneous systems under defined physicochemical conditions. The dry laboratory synthesis was performed in quartz ampoules at 200°C, due to the fact that this temperature is the most similar to the natural conditions. The most of the minerals, belonging to this system, in the nature appear under the same conditions. All phases, with in advance known stoichiometry, experimentally obtained, were investigated with light microscope and by X-ray diffraction in purpose to determine its homogeneity and crustal state. This procedure revealed a completely new phase $\text{AgTlSbS}_3\text{S}_4$ (Grzetic & Moh, 1991, Moh & Grzetic, 1993). This new phase is stable in the presence of the following minerals: matildite (AgBiS_3), miergryite (AgSbS_3), weissbergite (TlSbS_2) and pyrargyrite ($\text{Ag}_3\text{Sb}_3\text{S}_3$), qasibinary phases: TlSbS_2 and SbBiS_3, as well as with qasinary phases: $\text{Ag}_3\text{Ti}_3\text{Sb}_2\text{S}_6$ and $\text{Ag}_4\text{Sb}_3\text{BiS}_3$.

X-ray powder diffraction analysis of the $\text{AgTlSbS}_3\text{S}_4$ phase was performed by use of Guinier camera and by X-ray powder diffractometer procedure with Cu Kα monochromatic radiation. The powder diffraction pattern of $\text{AgTlSbS}_3\text{S}_4$ is very similar to that of galena (PbS), but is showing lower symmetry. Applying standard crystallographic procedure all diffraction lines were indexed on a monoclinic cell with $a = 12.750(4)$ Å, $b = 4.415(4)$ Å, $c = 13.174(5)$ Å, $\beta = 97.51(3)^{\circ}$, $V = 735.3(6)$ Å^3. This cell is similar to the cell of miergryte (AgSbS_3). Systematic absences indicated that the space group is not A2/a but P2, P3 or P2/m.
