СРПСКО КРИСТАЛОГРАФСКО ДРУШТВО SERBIAN CRYSTALLOGRAPHIC SOCIETY

ХХVІ КОНФЕРЕНЦИЈА СРПСКОГ КРИСТАЛОГРАФСКОГ ДРУШТВА

Изводи радова

26th CONFERENCE OF THE SERBIAN CRYSTALLOGRAPHIC SOCIETY

Abstracts

Сребрно језеро – Silver Lake 2019.

ХХVІ КОНФЕРЕНЦИЈА СРПСКОГ КРИСТАЛОГРАФСКОГ ДРУШТВА Изводи радова

26th CONFERENCE OF THE SERBIAN CRYSTALLOGRAPHIC SOCIETY Abstracts

Издавач - Publisher:

Српско кристалографско друштво
Ђушина 7, 11000 Београд, Србија, тел. 011-3336-701
Serbian Crystallographic Society
Đušina 7, 11 000 Belgrade, Serbia, phone: +381 11 3336 701

За издавача – For the publisher:

Јелена Роган – Jelena Rogan

Уредник – Editor: Александра Дапчевић – Aleksandra Dapčević

Технички уредник – Technical editor:

Лидија Радовановић – Lidija Radovanović

Издавање ове публикације омогућено је финансијском помоћи Министарства просвете, науке и технолошког развоја Републике Србије The publication is financially supported by Ministry of Education, Science and Technological development, Republic of Serbia

© Српско кристалографско друштво – Serbian Crystallographic Society ISBN 978-86-912959-5-0 ISSN 0354-5741

Штампа – Printing: Технолошко-металуршки факултет, Развојно-истраживачки центар Графичког инжењерства, Карнегијева 4, Београд, Србија Faculty of Technology and Metallurgy, Research and Development Centre of Printing Technology, Karnegijeva 4, Belgrade, Serbia

Тираж – Copies: 100 Београд – Belgrade 2019.

ХХVІ КОНФЕРЕНЦИЈА СРПСКОГ КРИСТАЛОГРАФСКОГ ДРУШТВА

26th CONFERENCE OF THE SERBIAN CRYSTALLOGRAPHIC SOCIETY

НАУЧНИ ОДБОР / SCIENTIFIC COMMITTEE:

др Љиљана Карановић, РГФ Београд / dr Ljiljana Karanović, RGF Beograd др Оливера Клисурић, ПМФ Нови Сад / dr Olivera Klisurić, PMF Novi Sad др Марко Родић, ПМФ Нови Сад / dr Marko Rodić, PMF Novi Sad др Срећко Трифуновић, ПМФ Крагујевац / dr Srećko Trifunović, PMF Kragujevac др Јелена Роган, ТМФ Београд / dr Jelena Rogan, TMF Beograd др Горан Богдановић, ИНН "ВИНЧА" / dr Goran Bogdanović, INN "Vinča" др Наташа Јовић-Орсини, ИНН "ВИНЧА" / dr Nataša Jović-Orsini, INN "Vinča" др Снежана Зарић, ХФ Београд / dr Snežana Zarić, HF Beograd др Катарина Анђелковић, ХФ Београд / dr Katarina Anđelković, HF Beograd др Братислав Антић, ИНН "ВИНЧА" / dr Bratislav Antić, INN "Vinča" др Мирјана Милић, ИНН "ВИНЧА" / dr Mirjana Milić, INN "Vinča" др Александра Дапчевић, ТМФ Београд / dr Aleksandra Dapčević, TMF Beograd др Предраг Вулић, РГФ Београд / dr Predrag Vulić, RGF Beograd др Тамара Тодоровић, ХФ Београд / dr Tamara Todorović, HF Beograd др Слађана Новаковић, ИНН "ВИНЧА" / dr Slađana Novaković, INN "Vinča" др Сабина Ковач, РГФ Београд / dr Sabina Kovač, RGF Beograd др Александар Кременовић, РГФ Београд / dr Aleksandar Kremenović, RGF Beograd

ОРГАНИЗАЦИОНИ ОДБОР / ORGANIZATION COMMITTEE:

др Александар Кременовић, РГФ Београд / dr Aleksandar Kremenović, RGF Beograd др Предраг Вулић, РГФ Београд / dr Predrag Vulić, RGF Beograd др Сабина Ковач, РГФ Београд / dr Sabina Kovač, RGF Beograd маст. геол. Предраг Дабић, РГФ Београд / Predrag Dabić, RGF Beograd др Јелена Роган, ТМФ Београд / dr Jelena Rogan, TMF Beograd др Александра Дапчевић, ТМФ Београд / dr Aleksandra Dapčević, TMF Beograd др Лидија Радовановић, ИЦ ТМФ Београд / dr Lidija Radovanović, IC TMF Beograd Бојана Симовић, дипл. инж, ИМСИ Београд / Bojana Simović, IMSI Beograd

ОРГАНИЗАТОРИ

СРПСКО КРИСТАЛОГРАФСКО ДРУШТВО SERBIAN CRYSTALLOGRAPHIC SOCIETY

РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ УНИВЕРЗИТЕТ У БЕОГРАДУ FACULTY OF MINING AND GEOLOGY UNIVERSITY OF BELGRADE

ТЕХНОЛОШКО-МЕТАЛУРШКИ ФАКУЛТЕТ УНИВЕРЗИТЕТ У БЕОГРАДУ FACULTY OF TECHNOLOGY AND METALLURGY UNIVERSITY OF BELGRADE

ПОКРОВИТЕЉИ

МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ MINISTRY OF EDUCATION, SCIENCE AND TECHNOLOGICAL DEVELOPMENT OF THE REPUBLIC OF SERBIA

CONTENT

САДРЖАЈ – СОЛТЕЛТ

PLENARNA PREDAVANJA - PLENARY LECTURES

Z. Jagličić, V. Kusigerski, M. Bošković
MAGNETOSTRUCTURAL CORRELATIONS IN TRANSITION METAL
COMPLEXES AND MAGNETIC NANOPARTICLES
Б. Кригер
МИНЕРАЛОШКА КРИСТАЛОГРАФИЈА. ВИШЕ ОЛ НОВИХ МИНЕРАЛА4
B. Krüger
CRYSTALLOGRAPHY BEYOND NEW MINERALS
I. Djerdj, S. Urban, P. Dolcet, L. Chen, M. Möller, O. Khalid, H. Camuka,
R. Ellinghaus, C. Li, S. Gross, P. J. Klar, B. Smarsly, H. Over
IN-SITU STUDY OF THE OXYGEN-INDUCED TRANSFORMATION OF
PYROCHLORE Ce ₂ Zr ₂ O _{7+X} TO THE κ-Ce ₂ Zr ₂ O ₈ PHASE, AN IMPORTANT
FEATURE FOR THE APPLICATION IN THREE-WAY CATALYSTS
Л. Б. Нинковић. Л. Вељковић. Л. Маленов. М. Р. Миловановића.
Ј. М. Живковић, И. Станковић, И. Вељковић, В. Медаковић,
Ј. Благојевић Филиповић, Д. Војислављевић Василев, С. Д. Зарић
НЕКОВАЛЕНТНЕ ИНТЕРАКЦИЈЕ КОМПЛЕКСА МЕТАЛА
И АРОМАТИЧНИХ МОЛЕКУЛА
D. B. Ninković, D. Veljković, D. Malenov, M. R. Milovanović, J. M. Živković,
I. M. Stanković, I. Veljković, V. Medaković, J. Blagojević Filipović,
D. Vojislavljević Vasilev, S. D. Zarić
NONCOVALENT INTERACTIONS OF METAL COMPLEXES
AND AROMATIC MOLECULES
E. Dib, B. Alonso, T. Mineva
CHEMICAL INTERACTIONS AND DYNAMICS OF ORGANIC-INORGANIC
INTERFACES IN TEMPLATED CRYSTALLINE MATERIALS USING
THEORETICAL MODELING
L. Radovanović, A. Dapčević, J. Rogan
KOMPLEKSI ELEMENATA d-BLOKA SA AROMATIČNIM
O,O- I N,N-DONORSKIM LIGANDIMA: SINTEZA,
STRUKTURA, SVOJSTVA I PRIMENA11
L. Radovanović, A. Dapčević, J. Rogan
COMPLEXES OF d-BLOCK ELEMENTS WITH AROMATIC
O,O- AND N,N-DONOR LIGANDS: SYNTHESIS,
STRUCTURE, PROPERTIES AND APPLICATIONS 13

CAL	РЖАІ
CIL	1 711 73

USMENA SAOPŠTENJA - ORAL PRESENTATIONS

M. Nikolić, M. Mijajlović, A. Bukonjić, D. Tomović, A. Stanković, V. Jevtić,	
Z. Ratković, S. Trifunović, I. Potočňák, E. Samoľová, G. Radić	
KRISTALNA STRUKTURA S-METIL DERIVATA TIOSALICILNE KISELINE	. 16
M. Nikolić, M. Mijajlović, A. Bukonjić, D. Tomović, A. Stanković, V. Jevtić,	
Z. Ratković, S. Trifunović, I. Potočňák, E. Samoľová, G. Radić	
CRYSTAL STRUCTURE OF S-METHYL DERIVATIVE	
OF THIOSALICYLIC ACID	17
В. Раичевић, М. Родић, М. Сакач, ТО. Knedel, С. Janiak	
КРИСТАЛНЕ СТРУКТУРЕ ДВА НОВА КОНЈУГАТА ФЕРОЦЕНА СА	
СТЕРОИДНИМ ХОРМОНИМА	18
V. Raičević, M. Rodić, M. Sakač , TO. Knedel, C. Janiak	
CRYSTAL STRUCTURES OF TWO NOVEL FERROCENE-STEROID	
HORMONE CONJUGATES	. 19
T. Todorović, P. Ristić, G. Janjić, I. Marjanović, O. Klisurić, N. Filipović	
MONOMER I KOORDINACIONI POLIMER SREBRA(I) SA ORGANSKIM	
TIOCIJANATNIM LIGANDOM: STRUKTURNA I IN SILICO STUDIJA	20
T. Todorović, P. Ristić, G. Janjić, I. Marjanović, O. Klisurić, N. Filipović	
SILVER(I)-BASED MONOMER AND COORDINATION POLYMER WITH	
ORGANIC THIOCYANATE LIGAND: STRUCTURAL AND IN SILICO STUDY.	21
P. Ristić, I. Marjanović, O. Klisurić, N. Filipović, T. Todorović	
3D KOORDINACIONI POLIMER Ag(I) SA PIPERAZIN	
1,4-DIKARBONITRILOM	. 22
P. Ristić, I. Marjanović, O. Klisurić, N. Filipović, T. Todorović	
Ag(I) 3D COORDINATION POLYMER WITH PIPERAZINE	
1,4-DICARBONITRILE	. 23
Ј. Бијелић, А. Станковић, М. Медвидовић-Косановић, П. Коп, Ј. Сун, Ђ. Бе	к,
Б. Марковић, В. Срдић, З. Јагличић, А. Куковец, Ј. Поповић, Ж. Скоко,	-
Б. Смарсли, И. Ђерђ	
СТРУКТУРНО ИСТРАЖИВАЊЕ ТРОСТРУКОГ ПЕРОВСКИТА Sr ₃ Fe ₂ WO ₉	
И ОДРЕЂИВАЊЕ МАГНЕТНИХ, ДИЕЛЕКТРИЧНИХ И ОПТИЧКИХ	
КАРАКТЕРИСТИКА	. 24
J. Bijelić, A. Stanković, M. Medvidović-Kosanović, P. Cop, Y. Sun, G. Beck,	
B. Marković, V. Srdić, Z. Jagličić, A. Kukovecz, J. Popović, Ž. Skoko,	
B. Smarsly, I. Djerdj	
STRUCTURAL INVESTIGATION OF TRIPLE PEROVSKITE Sr ₃ Fe ₂ WO ₉ AND	
DETERMINATION OF MAGNETIC,	
DIELECTRIC AND OPTICAL PROPERTIES	25

CO	NIT	TENT	
UU	1N 1	LEINI	

V. Ribić, A. Rečnik, J. Rogan, Z. Branković, G. Branković
HRTEM I DET STUDUA 26
V. Ribić, A. Rečnik, J. Rogan, Z. Branković, G. Branković
INVERSION BOUNDARIES IN Sb-DOPED ZnO: HRTEM AND DFT STUDY27
A. Spasojević-de Biré, N. Bošnjaković-Pavlović, X. Xu, S. Novakovic, JM. Gillet FASCINANTNE V–O VEZE. EKSPERIMENTALNA I TEORIJSKA ANALIZA
GUSTINE NAELEKTRISANJA I AIM ANALIZA RAZLIČITIH
POLIOKSOVANADATA
A. Spasojević-de Biré, N. Bošnjaković-Pavlović, X. Xu, S. Novakovic, JM. Gillet INTO THE FASCINATING V–O BOND. EXPERIMENTAL, THEORETICAL CHARGE DENSITY AND AIM STUDIES
OF DIFFERENT POLYOXOVANADATE COMPOUNDS
Н. Тришовић, Л. Радовановић, Г. В. Јањић, С. Т. Јелић, Ј. Роган
УЛОГА МЕЂУМОЛЕКУЛСКИХ ИНТЕРАКЦИЈА У
КРИСТАЛНОМ ПАКОВАЊУ 3-ИЗОПРОПИЛ И
3-ЦИКЛОПРОПИЛ ДЕРИВАТА ФЕНИТОИНА
N. Trišović, L. Radovanović, G. V. Janjić, S. T. Jelić, J. Rogan
THE ROLE OF INTERMOLECULAR INTERACTIONS IN THE CRYSTAL
PACKING OF 3-ISOPROPYL AND 3-CYCLOPROPYL DERIVATIVES OF
PHENYTOIN
Д. П. Маленов, А. J. Аладия, С. Д. Зария Стемине интеракиние са репиким уоризонта пним
$\Box O MED A IL IMA A M TIADO TIO LIAITU E DE DE E CODA DI MANTANI A TIADO TIO LIAITU E DE DE E CODA DI MANA A MILIO DE DE DE CODA DI MANA A MILIO DE DE DE CODA DI MANTANI A D$
D P Malanov A I Aladiá S D Zariá
STACKING INTERACTIONS AT LARGE HORIZONTAL DISPLACEMENTS
AND DIHYDROGEN BONDING OF BORAZINE 33
М. Р. Миловановић, Ј. М. Живковић, Д. Б. Нинковић, И. М. Станковић,
С. Д. Зарић
ДА ЛИ СУ УГЛОВИ МОЛЕКУЛА ВОДЕ У КРИСТАЛНИМ СТРУКТУРАМА
ПОУЗДАНИ? УДРУЖЕНА АНАЛИЗА КЕМБРИЧКЕ КРИСТАЛОГРАФСКЕ
БАЗЕ ПОДАТАКА И АВ-INITIO ПРОРАЧУНА
M. R. Milovanović, J. M. Živković, D. B. Ninković, I. M. Stanković, S. D. Zarić
ARE THE BOND ANGLES OF WATER MOLECULES IN
CRYSTAL STRUCTURES RELIABLE? JOINT CAMBRIDGE STRUCTURAL
DATABASE AND AB-INITIO CALCULATION ANALYSIS

САЛ	РЖАЈ
υų	1 2102 10

M. Petković Benazzouz, M. Sarvan, I. Đorđević, G. Janjić KRISTALOGRAFSKI UVID U SUPSTITUCIJU SUMPORA SELENOM, KVANTNO-M. Petković Benazzouz, M. Sarvan, I. Đorđević, G. Janjić CRYSTALLOGRAPHIC INSIGHT INTO THE SUBSTITUTION OF SULPHUR BY SELENIUM, QUANTUM-CHEMICAL CALCULATIONS AND BIOSYSTEM I. Đorđević, G. Janjić, A. Lazić, K. Gak, N. Valentić, N. Trišović, L. Radovanović, J. Rogan ULOGA NEKOVALENTNIH INTERAKCIJA FLUORA U PAKOVANJU MOTIVA: ANALIZA KRISTALOGRAFSKIH PODATAKA I I. Đorđević, G. Janjić, A. Lazić, K. Gak, N. Valentić, N. Trišović, L. Radovanović, J. Rogan THE ROLE OF NON-COVALENT FLUORINE INTERACTIONS IN PACKING MOTIFS: CRYSTALLOGRAPHIC DATA

POSTERSKA SAOPŠTENJA - POSTER PRESENTATIONS

M. Mijajlović, M. Nikolić, A. Bukonjić, D. Tomović, A. Stanković, V. Jevtić,	
Z. Ratković, S. Trifunović, I. Potočňák, E. Samoľová, G. Radić	
KRISTALNA STRUKTURA S-ETIL DERIVATA TIOSALICILNE KISELINE.	42
M. Mijajlović, M. Nikolić, A. Bukonjić, D. Tomović, A. Stanković, V. Jevtić,	
Z. Ratković, S. Trifunović, I. Potočňák, E. Samoľová, G. Radić	
CRYSTAL STRUCTURE OF S-ETHYL DERIVATIVE	
OF THIOSALICYLIC ACID	
S. S. Jovičić Milić, E. H. Avdović, V. V. Jevtić, Đ. S. Petrović, D. Dimić,	
J. M. Dimitrić Marković, I. Potočňák, S. R. Trifunović	
SINTEZA I KRISTALNA STRUKTURA NOVOG OKTOPAMINSKOG	
DERIVATA KUMARINA	
S. S. Jovičić Milić, E. H. Avdović, V. V. Jevtić, Đ. S. Petrović, D. Dimić,	
J. M. Dimitrić Marković, I. Potočňák, S. R. Trifunović	
SYNTHESIS AND CRYSTAL STRUCTURE OF NEW	
OCTOPAMINE DERIVATIVE OF COUMARIN	
Б. Чобељић, А. Певец, М. Миленковић, И. Турел, К. Анђелковић	
УТИЦАЈ АНЈОНА НА КООРДИНАЦИОНО ОКРУЖЕЊЕ	
ХЛОРО КОМПЛЕКСА Сu(II) СА ХИДРАЗОНОМ	
2-АЦЕТИЛПИРИДИНА И ЖИРАРОВОГ Т РЕАГЕНСА	46
B. Čobeljić, A. Pevec, M. R. Milenković, I. Turel, K. Anđelković	
THE INFLUENCE OF ANION ON COORDINATION GEOMETRY	
OF CHLORO Cu(II) COMPLEXES WITH 2-ACETYLPYRIDINE	
GIRARD'S T HYDRAZONE	47

CONTENT	
J. Lađarević, L. Radovanović, B. Božić, A. Mašulović, J. Rogan, D. Mijin KRISTALNA STRUKTURA, SPEKTRALNA I TERMALNA SVOJSTVA	40
Cu(II)-KOMPLEKSA AZO PIRIDONSKE BOJE	48
J. Ladarević, L. Radovanović, B. Božić, A. Mašulović, J. Rogan, D. Mijin	
CRYSTAL STRUCTURE, SPECTRAL AND THERMAL	40
PROPERTIES OF Cu(II) COMPLEX OF AZO PYRIDONE DYE	.49
Z. Popović, V. Pilepić, D. Matković-Čalogović	
METALO-BIOMOLEKULSKI POLIMERI S AMINOKISELINAMA:	
EKSPERIMENTALNA I KOMPUTACIJSKA STUDIJA	
POLIMERNIH L-PIROGLUTAMATO Cu(II) KOMPLEKSA	50
Z. Popović, V. Pilepić, D. Matković-Čalogović	
AMINO ACID BASED METAL-BIOMOLECULE POLYMERS: COMBINED	
EXPERIMENTAL AND COMPUTATIONAL STUDY	
OF POLYMERIC L-PYROGLUTAMATO Cu(II) COMPLEXES	.51
S. B. Marković, A. Višnievac, N. R. Filipović, T. R. Todorović	
SINTEZA I KARAKTERIZACIJA KOMPLEKSA Cd(II) SA	
(1,3-TIAZOL-2-IL)HIDRAZONIMA	.52
S. B. Marković, A. Višnjevac, N. R. Filipović, T. R. Todorović	
SYNTHESIS AND CHARACTERIZATION OF Cd(II)	
COMPLEXES WITH (1,3-THIAZOL-2-YL)HYDRAZONES	.53
М. Миленковић, А. Певец, Б. Чобељић, И. Турел, К. Анћелковић	
МОНО- И ЛИНУКЛЕАРНИ ХЛОРО КОМПЛЕКСИ Сu(II) СА ХИЛРАЗОНОМ	
2-АПЕТИЛПИРИЛИНА И ЖИРАРОВОГ Т РЕАГЕНСА	.54
M. Milenković, A. Pevec, B. Čobeljić, I. Turel, K. Anđelković	
MONO- AND DINUCLEAR CHLORO Cu(II) COMPLEXES	
WITH 2-ACETYLPYRIDINE GIRARD'S T HYDRAZONE	.55
Ж. К. Јаћимовић. С. Б. Новаковић. Г. А. Боглановић. G. Giester. М. Косовић.	
E. Libowitzky	,
КРИСТАЛНЕ СТРУКТУРЕ КОМПЛЕКСА Сu(II) И Co(II) СА АНЈОНОМ	
4-НИТРО-3-ПИРАЗОЛ КАРБОКСИЛНЕ КИСЕЛИНЕ КАО ЛИГАНЛОМ	
И НОВИ КРИСТАЛНИ ОБЛИК ЛИГАНЛА	56
Ž. K. Jaćimović, S. B. Novaković, G. A. Bogdanović, G. Giester, M. Kosović.	
E. Libowitzky	
CRYSTAL STRUCTURES OF Cu(II) AND Co(II) COMPLEXES	
WITH 4-NITRO-3-PYRAZOLE CARBOXYLIC ACID LIGAND	
AND NEW CRYSTAL FORM OF THE LIGAND	.57

CA	прж	AJ
\mathcal{O}_{I}		4 10

Т. Ђорђевић, Љ. Карановић, З. Јагличић, М. Јагодич ВОДА У АЛУАУДИТСКОМ ТИПУ СТРУКТУРЕ: СИНТЕЗА, КРИСТАЛНА СТРУКТУРА И МАГНЕТНА СВОЈСТВА Со ₃ (AsO ₄) ₀ ₅ (HAsO ₄) ₂ (H ₂ AsO ₄) ₀ ₅ (H ₂ O) ₀ ₅
T. Đơrđević, Lj. Karanović, Z. Jagličić, M. Jagodič WATER IN THE ALLUAUDITE TYPE STRUCTURE:
SYNTHESIS. CRYSTAL STRUCTURE AND MAGNETIC
PROPERTIES OF Co ₃ (AsO ₄) _{0.5} (HAsO ₄) ₂ (H ₂ AsO ₄) _{0.5} (H ₂ O) _{0.5}
M. M. Radanović, M. V. Rodić, Lj. S. Vojinović-Ješić, P. Weiss, V. M. LeovacSINTEZA I STRUKTURA $H_2L[CdBr_3(SCN)] \cdot H_2O$ $(L = 2 - ACETILPIRIDIN-AMINOGVANIDIN)$
M. V. Rodić, S. Belošević, V. M. Leovac
KRISTALNE STRUKTURE HL I [Co(HL)Br ₂ (H ₂ O)]
HL = SEMIKARBAZON METIL-PIRUVATA
M. V. Rodić, S. Belošević, V. M. Leovac
CRYSTAL STRUCTURES OF HL AND [Co(HL)Br ₂ (H ₂ O)]
HL = METHYL PYRUVATE SEMICARBAZONE
J. Araškov, A. Višnjevac, N. Filipović, T. Todorović Zn(II) KOMPLEKSI SA TIAZOLIL-HIDRAZONIMA: MOLEKULSKA I KRISTALNA STRUKTURA
J. Araškov, A. Višnjevac, N. Filipović, T. Todorović
Zn(II) COMPLEXES WITH THIAZOLYL-HYDRAZONES: MOLECULAR
AND CRYSTAL STRUCTURES
A. Stanković, A. Bukonjić, D. Tomović, M. Nikolić, M. Mijajlović, A. Kočović, N. Mijailović, V. Jevtić, Z. Ratković, I. Potočňák, E. Samoľová, S. Trifunović, G. Radić
KRISTALNA STRUKTURA BINUKLEARNOG KOMPLEKSA BAKRA(II)
SA S-IZOPROPIL DERIVATOM TIOSALICILNE KISELINE
A. Stanković, A. Bukonjić, D. Tomović, M. Nikolić, M. Mijajlović, A. Kočović,
N. Mijailović, V. Jevtić, Z. Ratković, I. Potočňák, E. Samoľová, S. Trifunović, G. Radić
THE CRYSTAL STRUCTURE OF BINUCLEAR COPPER(II) COMPLEX WITH
S-ISOPROPYL DERIVATIVE OF THIOSALYCILIC ACID
P. Dabić, A. Kremenović, S. Kovač, B. Krueger, M. V. Rodić KALIJUM-ITRIJUMSKI SILIKAT DOPIRAN Er I Eu
P. Dabić, A. Kremenović, S. Kovač, B. Krueger, M. V. Rodić
Er- and Eu-DOPED POTASSIUM-YTTRIUM SILICATE

CC)NT	ΓFN	IT
UU	/IN 1	LLIN	(1

А. Радуловић, С. Милош, З. Миладиновић, П. Вулић
Si/Al УРЕЂЕЊЕ СТРУКТУРЕ ТРИГОНАЛНОГ
НИСКОТЕМПЕРАТУРНОГ КАРНЕГИТА 70
A. Radulović, S. Miloš, Z. Miladinović, P. Vulić
Si/Al ORDERING IN THE LOW-TEMPERATURE
TRIGONAL CARNEGIEITE STRUCTURE
I Vukašinović M Počuča-Nešić D Luković Golić V Rihić Z Branković
A Dančević S Bernik C Branković
STRIKTIRNA MIKROSTRIKTIRNA I ELEKTRIČNA
SVOISTVA KERAMIKE Basno, DOPIRANOG ANTIMONOM 72
I Vukašinović M Počuča-Našić D I uković Colić V Rihić Z Branković
A Dančavić & Barnik C. Brankavić
STRUCTURAL MICROSTRUCTURAL AND ELECTRICAL PROPERTIES
OF Sb-DOPED BaSnO ₃ CERAMICS
Н. Јовић Орсини, А. Кременовић, М. М. Милић
МИКРОСТРУКТУРНА АНАЛИЗА КУБООКТАЕДАРСКИХ
НАНОЧЕСТИЦА $Zn_{0,13}Fe_{2,87}O_4$
N. Jovic Orsini, A. Kremenovic, M. M. Milic
MICROSTRUCTURAL ANALYSIS OF $Zn_{0.13}Fe_{2.87}O_4$
CUBOCIAHEDRAL NANOPARTICLES
В. Н. Николић, М. М. Васић, Д. Кисић
УТИЦАЈ Fe ³⁺ КАТЈОНА НА МЕХАНИЗАМ ФОРМИРАЊА И ВЕЛИЧИНУ
КРИСТАЛИТА с-СиFe ₂ O ₄ НАНОЧЕСТИЦА
V. N. Nikolić, M. M. Vasić, D. Kisić
INFLUENCE OF THE Fe ³⁺ CATION ON THE FORMATION MECHANISM
AND CRYSTALLITE SIZE OF CuFe ₂ O ₄ NANOPARTICLES
Li, Suručić, A. Rakić, A. Nastasović, A. Onija, A. Ponović, G. Janijć
KRISTALOGRAFSKA STUDIJA EFEKTA POLIMERIZACIJE OKSIANJONA
HROMA I VOLFRAMA U VODI NA SORPCIJU
NA MAGNETIČNOM MAKROPOROZNOM KOPOLIMERU
Li, Suručić, A. Rakić, A. Nastasović, A. Onija, A. Ponović, G. Janijć
CRYSTALLOGRAPHIC STUDY OF Cr AND W POLYMERISATION
EFFECTS ON SORPTION BY MAGNETIC MACROPOROUS
COPOLYMER IN AQUA SOLUTION
A. A. Kakic, I. Dorđević, G. B. Janjić
MODEL SISTEMI ZA DOPIRANJE AZOTOVIH ATOMA U STRUKTURE
KARBONSKIH MATERIJALA, PREUZETIH IZ KRISTALNIH STRUKTURA80
A. A. Rakić, I. Đorđević, G. B. Janjić
MODEL SYSTEMS FOR NITROGEN DOPED CARBON
MATERIALS EXTRACTED FROM CRYSTAL STRUCTURES

САДРЖАЈ	
G. Janjić, I. Đorđević, B. Marković, A. Nastasović ANALIZA DISTRIBUCIJE OKSOANJONSKIH VRSTA MOLIBDENA I RENIJUMA U KRISTALOGRAFSKOJ BAZI PODATAKA I VODENOM RASTVORU	х 2
AQUEUOS SOLUTION	3
М. Р. Миловановић, Ј. М. Андрић, В. Б. Медаковић, ЈР. Djukic, С. Д. Зарић УТИЦАЈ СУПСТИТУЕНАТА НА ИНТЕРАКЦИЈЕ У ФОСФИНО БОРАНСКИМ ПАРОРИМА	4
ФОСФИНО-ВОРАНСКИМ ПАРОВИМА	4
THE INFLUENCE OF THE SUBSTITUENTS ON THE INTERACTIONS IN PHOSPHINE–BORANE PAIRS	5
Д. Ж. Вељковић, А. Б. Ђуновић, С. Д. Зарић Поређење енергија х_н/рt интеракција између молекула	-
ЦИС- И ТРАНС-ПЛАТИНЕ И РАЗЛИЧИТИХ ДОНОРА ВОДОНИКА	6
COMPARISON OF ENERGIES OF X-H/Pt INTERACTIONS BETWEEN CIS- AND TRANSPLATIN MOLECULES AND	7
DIFFERENT HYDROGEN ATOM DONORS 8	1
M. Sarvan, M. Petković Benazzouz, G. Janjić INTERAKCIJE DVE HEMIJSKE VEZE, FUNDAMENT KOJI NESTAJE U SUPRAMOLEKULSKOJ ARHITEKTURI	8
M. Sarvan, M. Petković Benazzouz, G. Janjić BOND-BOND INTERACTIONS, THE MISSING FUNDAMENT	-
OF SUPRAMOLECULAR ARCHITECTURE	9
S. B. Novaković, A. Spasojević-de Biré, J. P. Djukić EKSPERIMENTALNA I TEORIJSKA ANALIZA RASPODELE GUSTINE NAELEKTRISANJA U SYN-FACIJALNOM Cr, Mn-BENZIL KOMPLEKSU	0
S. B. Novaković, A. Spasojević-de Biré, J. P. Djukić EXPERIMENTAL AND THEORETICAL CHARGE DENSITY STUDY OF AN ELECTRON SYN-FACIAL Cr, Mn BENZYL COMPLEX	1
И. М. Станковић, С. Д. Зарић ХИДРАТАЦИЈА У КРИСТАЛНИМ СТРУКТУРАМА АМИЛОИДА	2
HYDRATION IN AMYLOID CRYSTAL STRUCTURES	3

Ј. П. Благојевић Филиповић, С. Д. Зарић	
СТЕКИНГ ИНТЕРАКЦИЈЕ С6-АРОМАТИЧНИХ ПРСТЕНОВА И	
ШЕСТОЧЛАНИХ ПРСТЕНОВА ФОРМИРАНИХ ВОДОНИЧНОМ	
ВЕЗОМ ПОТПОМОГНУТОМ РЕЗОНАНЦИЈОМ	94
J. P. Blagojević Filipović, S. D. Zarić	
STACKING INTERACTIONS OF C6-AROMATIC RINGS AND SIX-MEMBERED	

CONTENT

Ј. М. Живковић, И. М. Станковић, Д. Б. Нинковић, С. Д. Зарић СТЕКИНГ ИНТЕРАКЦИЈЕ СУПСТИТУИСАНИХ МОЛЕКУЛА БЕНЗЕНА....... 96 **Ј. М. Živković, I. M. Stanković, D. B. Ninković, S. D. Zarić** STACKING INTERACTIONS OF SUPSTITUATED BENZENE MOLECULES...... 97

PLENARNA PREDAVANJA PLENARY LECTURES

MAGNETOSTRUCTURAL CORRELATIONS IN TRANSITION METAL COMPLEXES AND MAGNETIC NANOPARTICLES

Z. Jagličić^{a,b}, V. Kusigerski^c, M. Bošković^c

^a Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, Ljubljana, Slovenia; ^b Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova cesta 2, Ljubljana, Slovenia; ^c The Vinca Institute, University of Belgrade, Belgrade, Serbia e-mail: zvonko.jaglicic@imfm.si

The analysis and understating of magnetostructural correlations are a prerequisite for a synthesis of materials with prescribed magnetic properties. And vice versa: understanding magnetostructural correlations enables a better insight into the structure and chemical bonds of the material for which the magnetic properties were previously experimentally determined.

Experimental procedure for the determination of temperature and magnetic field dependence of magnetic properties of solids on a Quantum Design MPMS magnetometer will be briefly described.

Transition metal complexes are one of the most studied materials for analysis of magnetostructural correlations due to their relatively simple magnetic structure with only few magnetic ions in a unit cell, while the units are well separated by non-magnetic ions. In this way the magnetic interactions are restricted to a unit cell (intramolecular interactions), while interaction between magnetic ions from different units (intermolecular interactions) are usually negligible.

Through the examples, we will describe magnetic properties of a simple mononuclear units with different transition metal ions [1], a low spin – high spin transition of Ni(II) ions in a nickel complex [2] as shown in Fig. 1, and selected polynuclear complexes, where intramolecular interactions need to be taken into account in order to adequately describe their magnetic properties [3,4].

A temperature dependent susceptibility $\chi(T)$ of a complex composed of dinuclear Cu(II) units (Bleaney-Bower equation) will be compare to a structurally similar complex with Cu(II) ions arranged in the chains (Bonner-Fisher model) [5].

Magnetic properties of magnetic nanoparticles are strongly influenced by the size distribution of the investigated nanoparticles [6]. We have developed a Monte Carlo method for calculation of nanoparticles' size distribution from the measured isothermal magnetization curves M(H) above the blocking temperature where the nanoparticles are in a superparamagnetic regime.

Figure 1. When 1 (Ni(12aneS₄)(BF₄)₂) absorbs water from air the near square-planar coordination of Ni(II) with low spin changes to $1+H_2O$ with high spin Ni(II) in octahedral geometry. The change in magnetic properties is accompanied by a change of colour from deep purple into light blue. The process is reversible [2].

J. Rogan, D. Poleti, L. Karanović, Z. Jagličić, J. Mol. Struct., 985 (2011) 371–379.
 A.J. Churchard, M. Derzsi, Z. Jagličić, A. Remhof, W. Grochala, Dalton Trans., 41 (2012) 5172–5176.

[3] L.L. Han, S.N. Wang, Z. Jagličić, S.Y. Zeng, J. Zheng, Z.H. Li, J.S. Chena, D. Sun, *CrysEngComm*, **17** (2015) 1405–1415.

[4] M. Đaković, Z. Jagličić, B. Kozlevčar, Z. Popović, *Polyhedron*, **29** (2010) 1910–1917.

[5] B. Kozlevčar, N. Kitanovski, Z. Jagličić, N.A.G. Bandeira, V. Robert, B.L. Guennie, P. Gomez, *Inorg. Chem.*, **51** (2012) 3094–3102.

[6] M. Tadić, D. Marković, V. Spasojević, V. Kusigerski, M. Remškar, J. Pirnat, Z. Jagličić, *J. Alloy Compd.*, 441 (2007) 291–296.

МИНЕРАЛОШКА КРИСТАЛОГРАФИЈА, ВИШЕ ОД НОВИХ МИНЕРАЛА

Б. Кригер

Универзитет у Инсбруку, Институт за минералогију и петрографију, Аустрија e-mail: biljana.krueger@uibk.ac.at

Минералошка кристалографија се бави, између осталог, структурном анализом минерала и њихових синтетичких аналога. Они показују импресивну разноликост кристалних структура и особина. Важан део истраживања је идентификација и карактеризација нових минерала, од којих сваке године буде описано око 150. Савремене методе омогућавају да се и најмањи кристали могу користити за структурну анализу. Познавање кристалне структуре је основа за разумевање физичких и хемијска особина минерала. Нови минерали су често веома важни за разумевање комплексних процеса формирања стена. Многи модерни материјали су структурно изведени из минерала. Такође, структуре нових минерала могу бити интересантне као потенцијални прототипови за нове функционалне материјале. Стога је минералошка кристалографија интердисциплинарна наука између геологије, науке о материјалима, хемије и физике.

Разноликост структура минерала је добро представљена у интеркалисаним (или сломљеним) антиперовскитима арктит супергрупе [1]. Ова супергрупа комбинује силикатне минерале групе набимусаита и задовита. Целу супергрупу карактеришу модуларне структуре које садрже једноструке антиперовскитцке слојеве састава $\{[WB_6](TO_4)_2\}$, троструке антиперовскитске слојеве $\{[W_3B_{12}](TO_4)_4\}$ и тетраедарске слојеве $A(TO_4)_2$, где је $A = Ba, K, \ldots; B = Ca, Na. \ldots; T = Si, P, B^{5+}, C^{6+}, Al. \ldots; B = O^{2-}, F. Јединице описане као слојеви могу се такође означити као модули користећи модуларну класификацију [2].$

Моје предавање је кратко представљање минералошке кристалографије, са примерима из различитих области, укључујући анализе нових минерала, интердисциплинарне методе и њихове примене. Посебан акценат биће дат дифракцији на монокристалу, тј. експериментима на синхротрону, Раманској спектроскопији и квалитативном моделовању неуређених структура.

[1] E.V. Galuskin, I.O. Galuskina, B. Krüger, H. Krüger, Abstr. XXII Meet. Int. Mineral. Assoc., 13–17 August 2018, Melbourne, Australia, 523–524.

[2] G. Ferraris, E. Makovicky, S. Merlino (2004) Crystallography of Modular Materials. New York: Oxford University Press Inc.

CRYSTALLOGRAPHY BEYOND NEW MINERALS

B. Krüger

University of Innsbruck, Institute of Mineralogy and Petrography, Austria e-mail: biljana.krueger@uibk.ac.at

Mineralogical crystallography, among other things, deals with the structural analysis of minerals and their synthetic analogues. These show an impressive variety of crystal structures and related properties. An important part of this is also the identification and characterization of new minerals, of which about 150 are described annually worldwide. With modern methods even the smallest crystals can be used for structural analysis. The knowledge of the atomic structure is the basis on which the physical and chemical properties of the minerals can be understood. New minerals are often important pieces of the puzzle in understanding complex rock formation processes. Many modern crystalline functional materials are structurally derived from minerals. Also, the structures of new minerals may be interesting as potential prototypes for new functional materials. Thus, mineralogical crystallography is an interdisciplinary science between geology, material science, chemistry and physics. The diversity of the structures in minerals is well represented in the intercalated (or broken) antiperovskites of the arctite supergroup [1 and references therein]. This supergroup combines silicate minerals of the nabimusaite group and zadovite group. The entire supergroup is characterized by modular structures containing single antiperovskite (sAP) layers of composition $\{[WB_6](TO_4)_2\}$, triple antiperovskite (tAP) layers {[W_3B_{12}](TO_4)₄}, and tetrahedral (T) layers $A(TO_4)_2$, where A = Ba, K, Sr...; B = Ca, Na...; T = Si, P, V^{5+} , S^{6+} , Al...; $W = O^{2-}$, F⁻. The units addressed as layers above may also be denoted as modules using a modular classification [2].

My talk is a brief exploration of the world of mineralogical crystallography, with examples from a variety of fields including: new mineral analysis, applications, interdisciplinary cooperation, and advanced methods. Special emphasis will be dedicated to the methods of structural investigation: single-crystal synchrotron radiation diffraction experiments, micro-Raman spectroscopy, and qualitative modelling of disorder.

[1] E.V. Galuskin, I.O. Galuskina, B. Krüger, H. Krüger, Abstr. XXII Meet. Int. Mineral. Assoc., 13–17 August 2018, Melbourne, Australia, 523–524.

[2] G. Ferraris, E. Makovicky, S. Merlino (2004) Crystallography of Modular Materials. New York: Oxford University Press Inc.

IN-SITU STUDY OF THE OXYGEN-INDUCED TRANSFORMATION OF PYROCHLORE Ce₂Zr₂O_{7+X} TO THE κ-Ce₂Zr₂O₈ PHASE, AN IMPORTANT FEATURE FOR THE APPLICATION IN THREE-WAY CATALYSTS

<u>I. Djerdj</u>^a, S. Urban^b, P. Dolcet^c, L. Chen^d, M. Möller^b, O. Khalid^b, H. Camuka^b, R. Ellinghaus^b, C. Li^b, S. Gross^c, P. J. Klar^d, B. Smarsly^b, H. Over^b

^a Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia; ^b Physikalisch-Chemisches Institut, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany; ^c Dipartimento di Scienze Chimiche, Università degli Studi di Padova via Francesco Marzolo, 1, I-35131 Padova, Italy; ^d I. Physikalisches Institut, Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany

e-mail: igor.djerdj@kemija.unios.hr

The temporary storage of oxygen in a solid catalyst is imperative for many important industrial oxidation reactions in the gas phase, for instance the post-treatment of automotive exhaust gas. Ceria possesses high OSC (oxygen storage capacity) which is a measure of the oxygen quantity that material can store and release. This makes ceria suitable for redox reactions which usually follow Mars-van Krevelen mechanism (surface oxygen atoms directly involved in reactions). A peculiar mixed Ce-Zr (1:1) oxide, the ordered κ-Ce₂Zr₂O₈ phase, is a promising catalytic material exhibiting an extraordinarily high oxygen storage capacity (OSC) and high thermal and chemical stability. We elucidate the temperature-dependent transformation between the pyrochlore pyr-Ce2Zr2O7.3 and κ-Ce2Zr2O8 phase upon oxygen uptake by in-situ X-ray diffraction, X-ray absorption and in-situ Raman spectroscopy, providing insights into the electronic and structural changes on the atomic level, which are at the heart of the extraordinarily high OSC. We demonstrate that the Ce³⁺ concentration can be followed during transformation *in-situ* by Raman spectroscopy of the electronic spin flip in the f-shell of Ce^{3+} . The catalytic activity of the κ -Ce₂Zr₂O₈ phase has been investigated without an additional active component such as Pt: While the high OSC of the kappa phase is beneficial for the oxidation of CO, the oxidation of HCl turns out to be not affected by the high OSC. [1]

[1] S. Urban, I. Djerdj, P. Dolcet, L. Chen, M. Möller, O. Khalid, H. Camuka, R. Ellinghaus, C. Li, S. Gross, P.J. Klar, B. Smarsly, H. Over, *Chem. Mater.*, **29** (2017) 9218–9226.

26th Conference of the Serbian Crystallographic Society

🔍 🛈 🔍 Ce 🔹 Zr 🔿 O-Vacancy

Figure 1: Structural transformation of pyr-Ce₂Zr₂O₇ (Ce₁₆Zr₁₆O₅₆, left) to the κ -Ce₂Zr₂O₈ phase (Ce₁₆Zr₁₆O₆₄, right).

НЕКОВАЛЕНТНЕ ИНТЕРАКЦИЈЕ КОМПЛЕКСА МЕТАЛА И АРОМАТИЧНИХ МОЛЕКУЛА

Д. Б. Нинковић^а, Д. Вељковић^в, Д. Маленов^в, М. Р. Миловановића^а, Ј. М. Живковић^а, И. Станковић⁶, И. Вељковић⁶, В. Медаковић^в, Ј. Благојевић Филиповић^а, Д. Војислављевић Василев^а, <u>С. Д. Зарић^{в,г}</u>

^а Иновациони центар Хемијског факултета, Студентски трг, 12-16, 11000 Београд, Србија; ⁶ Институт за Хемију, Технологију и Металургију, Универзитет у Београду, Његошева 12, 11000 Београд, Србија; ⁶ Хемијски факултет, Универзитет у Београду, Студентски трг, 12-16, 11000 Београд, Србија; ² Департман за хемију, Тексас A&M Универзитет у Катару, Поштански фах 23874, Доха, Катар e-mail: szaric@chem.bg.ac.rs

Наше истраживање се заснива на анализи података у кристалним структурама из Кембичке базе структурних података (CSD) и на квантно хемијским прорачунима. Анализа података из CSD-а омогућава да се препознају интеракције у кристалним структурама и да се опишу геометрије ових интеракција, док помоћу квантно-хемијских прорачуна можемо проценити интеракционе енергије и пронаћи најстабилније геометрије интеракција. Користећи ову методологију успели смо да препознамо и опишемо неколико нових типова интеракција.

Наше проучавање интеракција планарних метал-хелатних прстенова показало је могућност стекинг интеракција са органским ароматичним прстеновима и интеракције између два хелатна прстена. Израчунате енергије указују на јаке стекинг интеракције метал-хелатних прстенова; стекинг метал-хелатних прстенова је јачи од стекинга између два молекула бензена. Испитивања интеракција координираних молекула воде и амонијака указују на јаче водоничне везе и јаче OH/π и NH/ π интеракције координираних у односу на некоординоване молекуле воде и амонијака. Прорачуни OH/M интеракција између металног јона у квадратно планарним комплексима и молекула воде указују да су ове интеракције међу најјачим водоничним везама у било ком молекулском систему.

Студије о ароматичним молекулима указују на стекинг интеракције са великим хоризонталним померањима између два ароматична молекула са значајно јаким интеракцијама, енергија је 70% најјаче стекинг интеракције. Наши подаци такође указују на то да су интеракције алифатичних прстенова са ароматичним прстеном јаче од интеракција између два ароматична молекула, док су алифатично/ароматичне интеракције веома честе у протеинским структурама.

[1] D.P. Malenov, G.V. Janjić, V.B. Medaković, M.B. Hall, S.D. Zarić, *Cood. Chem. Rev.*, **345** (2017) 318–341.

[2] D.B. Ninković, G.V. Janjić, D.Ž. Veljković, D.N. Sredojević, S.D. Zarić, *Chem-PhysChem*, **12** (2011) 3511–3514.

[3] D.B. Ninković, J.M. Andrić, S.N. Malkov, S.D. Zarić, *PhysChemChemPhys*, **16** (2014) 11173–11177.

NONCOVALENT INTERACTIONS OF METAL COMPLEXES AND AROMATIC MOLECULES

D. B. Ninković ^a, D. Veljković ^c, D. Malenov ^c, M. R. Milovanović ^a, J. M. Živković ^a, I. M. Stanković ^b, I. Veljković ^b, V. Medaković ^c, J. Blagojević Filipović ^a, D. Vojislavljević Vasilev ^a, <u>S. D. Zarić</u> ^{c,d}

^a Innovation center of the Faculty of Chemistry, Studentski trg 12-16, Belgrade, 11000, Serbia; ^b Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; ^c Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia; ^d Texas A&M University at Qatar, Education City, PO Box 23874, Doha, Qatar e-mail: szaric@chem.bg.ac.rs

Our research is based on analyzing data in crystal structures from the Cambridge Structural Database (CSD) and on quantum chemical calculations. The analysis of the data from the CSD enable to recognize interactions in crystal structures and to describe the geometries of these interactions, while by quantum chemical calculations we can evaluate interaction energies and find the most stable interaction geometries. Using this methodology we were able to recognize and describe several new types of noncovalent interactions.

Our study of planar metal-chelate rings interactions showed possibility of chelate ring stacking interactions with organic aromatic rings, and stacking interactions between two chelate rings. The calculated energies indicate strong stacking interactions of metal-chelate rings; the stacking of metal-chelate rings is stronger than stacking between two benzene molecules. Studies of interactions of coordinated water and ammonia indicate stronger hydrogen bonds and stronger OH/ π and NH/ π interactions of coordinated in comparison to noncoordinated water and ammonia. The calculations on OH/M interactions between metal ion in square-planar complexes and water molecule indicate that these interactions are among the strongest hydrogen bonds in any molecular system.

The studies on aromatic molecules indicate stacking interactions at large horizontal dispacements between two aromatic molecules with significantly strong interacitons, the energy is 70% of the strongest stacking geometry. Our data also indicate that stacking interactions of an aliphatic rings with an aromatic ring are stonger than interactions between two aromatic molecules, while aliphatic/aromatic interactions are very frequent in protein structures.

[1] D.P. Malenov, G.V. Janjić, V.B. Medaković, M.B. Hall, S.D. Zarić, *Cood. Chem. Rev.*, **345** (2017) 318–341.

[2] D.B. Ninković, G.V. Janjić, D.Ž. Veljković, D.N. Sredojević, S.D. Zarić, Chem-PhysChem, 12 (2011) 3511–3514.

[3] D.B. Ninković, J.M. Andrić, S.N. Malkov, S.D. Zarić, *PhysChemChemPhys*, **16** (2014) 11173–11177.

CHEMICAL INTERACTIONS AND DYNAMICS OF ORGANIC-INORGANIC INTERFACES IN TEMPLATED CRYSTALLINE MATERIALS USING THEORETICAL MODELING

E. Dib^a, B. Alonso^a, <u>T. Mineva^a</u>

^a Institut Charles Gerhardt Montpellier, UMR5253 CNRS-UM-ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34296 Montpellier, France e-mail: tzonka.mineva@enscm.fr

A combination of organic and inorganic entities at a molecular level led to the concept of hybrid organic-inorganic materials and is in the basis of synthesis of zeolites, mesoporous materials, macrocellular solids, hierarchically structured materials, clathrates, etc. The engineering process is much ahead with respect to the fundamental understandings, which is strongly hindered by the intrinsic spatial and dynamical disorder experienced by the chemical entities at these interface. Hybrid organic-inorganic interfaces are classified in class I if only weak van der Waals, electrostatic and H-bonds keep together both entities, and in class II if covalent bonds between the organic and inorganic building blocks are formed.

In this presentation we will focus on class I interfaces in ammonium halide salts crystals [1,2] and in template porous silicate-based crystalline materials [3,4]. Both organic and inorganic entities experience modulation of their individual properties because of the chemical interactions. To understand precisely these interactions we use the state-of-the art DFT and DFT coupled to Born-Oppenheimer molecular dynamics (BOMD) to compute characteristic NMR properties. Most attention will be given to ¹⁴N quadrupolar parameters (coupling constant C_Q and asymmetry parameter η_Q), which measure the quadrupolar interaction between quadrupole moment at nuclei with spin I > 1/2 and electric field gradient produced by surrounding electrons and nuclei. The quadrupole coupling constants of nuclei in the organic entity are very sensitive measures of minor changes in the inorganic structures, crystal packing and molecular (organic) structure at a finite temperature.

[1] E. Dib, B. Alonso, T. Mineva, J. Phys. Cem. A, 118 (2014) 3525-3533.

[2] E. Dib, T. Mineva, B. Alonso, Ann. Rep. NMR Spectr., 87 (2016) 175-235.

[3] E. Dib, M. Freire, V. Pralong, T. Mineva, B. Alonso, Acta Crystallogr., C73 (2017) 202–207.

[4] E. Dib, T. Mineva, E. Veron, V. Sarou Kanian, F. Fayon, B. Alonso, *J. Phys. Chem. Let.*, **9** (2018) 19–24.

KOMPLEKSI ELEMENATA d-BLOKA SA AROMATIČNIM O,O- I N,N-DONORSKIM LIGANDIMA: SINTEZA, STRUKTURA, SVOJSTVA I PRIMENA

L. Radovanović^a, A. Dapčević^b, J. Rogan^b

^a Inovacioni centar Tehnološko-metalurškog fakulteta, Univerzitet u Beogradu, Karnegijeva 4, Beograd, Srbija; ^b Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Karnegijeva 4, Beograd, Srbija e-mail: Iradovanovic@tmf.bg.ac.rs

Reakcijom izmene liganada različitim metodama sinteze dobijeno je 22 ternarna kompleksa elemenata d-bloka [Mn(II), Co(II), Ni(II), Cu(II) i Zn(II)] sa anjonima aromatičnih polikarboksilnih kiselina (ftalne, izoftalne, tereftalne i piromelitne) kao O,O-donorskim ligandima i aromatičnim N,N-donorskim ligandima kao što su 2,2'-dipiridilamin i 2,2'-bipirimidin [1-5]. Trinaest kompleksa sintetisano je u monokristalnom obliku, dok su ostala jedinjenja mikrokristalna. Prema vrsti centralnog atoma, u obliku monokristala dobijeno je pet Mn(II)-, dva Co(II)-, jedan Ni(II)-, dva Cu(II)-, dva Zn(II)-kompleksa, kao i bimetalni Mn(II)-Cu(II)-kompleks. Kristalne strukture ovih jedinjenja određene su rendgenskom strukturnom analizom. Strukturne karakteristike kompleksa detaljno su opisane i međusobno su upoređene. Sintetisani kompleksi ispitani su infracrvenom spektroskopijom (IC), a neki su dodatno podvrgnuti kvantno-hemijskim proračunima, simultanoj termogravimetrijskoj, diferencijalnoj termijskoj i diferencijalnoj skenirajućoj kalorimetrijskoj analizi (TG/DTA/DSC), elementarnoj analizi, magnetnim merenjima na sobnoj i niskim temperaturama, energetskoj disperzivnoj i atomskoj apsorpcionoj spektroskopiji (EDS i AAS) i merenju fotoluminescencije. Za pojedine komplekse ispitana je i antimikrobna aktivnost. Na osnovu rezultata IC-, ED- i AA-spektroskopije, elementarne i TG/DSC-analize, magnetnih merenja i boje određene su formule mikrokristalnih kompleksa i pretpostavljena je njihova struktura.

Kod kompleksa dobijenih u obliku monokristala razmatrani su parametri koji dovode do strukturnih različitosti, kao što su dužine veza i uglovi, koordinacioni broj jona metala, način koordinacije O,O- i N,N-donorskih liganada i uticaj nekovalentnih interakcija na geometriju i pakovanje molekula [1–5]. Koordinacioni brojevi d-elemenata su različiti i nalaze se u opsegu od 5 do 7. Kod većine kompleksa O,O-donorski ligandi imaju mostovnu ulogu sa različitim načinima koordinacije COO⁻-grupa, u rasponu od bismonodentatnog do heksadentatnog vezivanja. Kod tri jedinjenja ovi ligandi nisu koordinirani za jone metala, već učestvuju u građenju vodoničnih veza. Dobijeni kompleksi su mononuklearni, binuklearni i polimerni, a supramolekulsko 3D umrežavanje postiže se vodoničnim vezama i slabijim nekovalentnim interakcijama (C–H… π , π - π , C–H…N i C–H…O) između 1D lanaca ili 2D slojeva.

Pretragom Kembričke kristalografske baze podataka utvrđene su orijentacije COO⁻-grupa kod benzen-dikarboksilat kompleksa [1]. Energije tri poziciona izomera benzen-dikarboksilat-jona izračunate su pomoću Møller-Plesset perturbacione teorije

XXVI Конференција Српског кристалографског друштва

drugog reda i tri hibridne HF/DFT metode sa 6-311G** baznim setom. Rezultati analiza dekompozicije lokalnih molekulskih orbitala i prirodnih vezujućih orbitala pokazali su odlično slaganje eksperimentalne i izračunate geometrije, čime je dokazano da je planarna konformacija energetski najpovoljnija kod anjona tereftalne i izoftalne kiseline, dok su kod anjona ftalne kiseline COO⁻-grupe zarotirane i formiraju komplementarne uglove u odnosu na benzenski prsten u najstabilnijoj konformaciji.

Termička stabilnost, magnetna, fotoluminescentna svojstva i antimikrobna aktivnost pojedinih kompleksa detaljno su analizirani i povezani sa njihovim strukturnim karakteristikama. Merenja magnetne susceptibilnosti pokazala su da većina ispitanih kompleksa ima paramagnetna svojstva, sa izuzetkom jednog Co(II)-kompleksa kod kojeg su nađene feromagnetne interakcije, što je dovedeno u vezu sa formiranjem lanaca molekula u kristalnom pakovanju. Ispitivanja fotoluminescencije između Zn(II)-kompleksa pokazala su da su ovi kompleksi optički aktivni, s tim da je najjači intenzitet fotoluminescencije utvrđen za kompleks kod kojeg postoji veći broj nekovalentnih interakcija u strukturi. Antimikrobna svojstva Zn(II)-kompleksa ispitana su in vitro na Gram-pozitivne bakterije (Bacilus subtilis, Enterococcus faecalis, Listeria monocytogenes i Staphylococcus aureus), Gram-negativne bakterije (Esherichia coli, Pseudomonas aeruginosa i Salmonella enteritidis) i gljivicu Candida albicans i pokazano je da Zn(II)-kompleks sa izoftalat-jonom ima najbolju aktivnost na bakterije Listeria monocytogenes i Esherichia coli [2]. Diskutovana je veza između antimikrobne aktivnosti kompleksa i njihovih kristalnih struktura.

[1] L. Radovanović, J. Rogan, D. Poleti, M.V. Rodić, N. Begović, *Inorg. Chim. Acta*, 445 (2016) 46–56.

[2] L. Radovanović, J. Rogan, D. Poleti, M. Milutinović, M.V. Rodić, *Polyhedron*, **112** (2016) 18–26.

[3] D. Poleti, J. Rogan, M. V. Rodić, L. Radovanović, Acta Crystallogr., C71 (2015) 110–115.

[4] L. Radovanović, J. Rogan, D. Poleti, M.V. Rodić, Z. Jagličić, J. Serb. Chem. Soc., 82 (2017) 1247–1258.

[5] L. Radovanović, J. Rogan, D. Poleti, M.V. Rodić, Z. Jagličić, Acta Chim. Slo., 65 (2018) 191–198.

COMPLEXES OF d-BLOCK ELEMENTS WITH AROMATIC O,O- AND N,N-DONOR LIGANDS: SYNTHESIS, STRUCTURE, PROPERTIES AND APPLICATIONS

L. Radovanović^a, A. Dapčević^b, J. Rogan^b

^a Innovation Centre of the Faculty of Tecnology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia; ^b Faculty of Tecnology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia e-mail: Iradovanovic@tmf.bg.ac.rs

A series of 22 d-block element complexes [Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)] containing anions of aromatic polycarboxylate acids (phthalic, isophthalic, terephthalic and pyromellic) as O,O-donor ligands and aromatic N,N-donor ligands such as 2,2'-dipyridylamine and 2,2'-bipyrimidine, has been obtained by ligand exchange reaction using different synthetic methods [1-5]. Thirteen complexes were obtained as single crystals, while the others were microcrystalline. According to the type of central atom, five Mn(II), two Co(II), one Ni(II), two Cu(II), two Zn(II) complexes, and bimetallic Mn(II)-Cu(II) complex were synthesized in form of single crystals. The structures of these compounds were determined by single-crystal X-ray analysis. Structural properties of complexes were discussed in detail and compared. All complexes were characterized by infrared (IR) spectroscopy, while some of them were also subjected to the quantumchemical calculations, simultaneous thermogravimetry, differential thermal analysis and differential scanning calorimetry (TG/DTA/DSC analysis), elemental analysis, magnetic measurements at room and low temperatures, energy-dispersive X-ray spectroscopy (EDS), atomic absorption spectroscopy (AAS) and photoluminescence measurements. Antimicrobial activity was also investigated for some complexes. Based on the results of IR, EDS and AAS spectroscopy, elemental and TG/DSC analyses, magnetic measurements and color, the formulae of microcrystalline complexes were determined and the structures were assumed.

The parameters that affect structural diversities, such as bond lengths and angles, the coordination number of metal ions, the coordination mode of O,O- and N,N-donor ligands and the influence of non-covalent interactions on geometry and crystal packing were considered for the complexes in form of single crystals [1–5]. The coordination numbers of d-elements are different and range from 5 to 7. In most of compounds, O,O-donor ligands have the bridging role with different coordination modes of COO⁻ groups, *i.e.* from bis monodentate to hexadentate. These ligands are counter ions only in three compounds and are involved in the hydrogen bonds. The complexes are mononuclear, binuclear and polymeric, and supramolecular 3D networking is achieved by hydrogen bonds and weak non-covalent interactions (C–H… π , π - π , C–H…N and C–H…O) between 1D chains or 2D layers.

Based on search of the Cambridge Structural Database, the orientations of COO⁻ groups in benzenedicarboxylate complexes were determined [1]. The energies of three positional isomers of benzenedicarboxylate ions were calculated using the second-order XXVI Конференција Српског кристалографског друштва

Møller-Plesset perturbation theory and three hybrid HF/DFT methods with 6-311G** basis set. Results of Localized Molecular Orbital Energy Decomposition and Natural Bond Orbital analyses have shown that experimental and calculated geometries are in agreement, indicating that the terephthalate and isophthalate anions prefer the planar conformation, while COO⁻ groups are inclined and make complementary angles relative to the aromatic rings in the phthalate anions.

Thermal stability, magnetic, photoluminescent and antimicrobial properties of some complexes have been analyzed in detail and correlated with their structural features. Magnetic susceptibility measurements have shown that the most of complexes exhibit paramagnetic behavior, with the exception of one ferromagnetic Co(II) complex, which is related to the formation of chains between molecules in the crystal packing. The photoluminescence investigation has shown the optical activity of Zn(II) complexes with the strongest intensity of photoluminescence for the complex with the increased number of noncovalent interactions in structure. The antimicrobial behaviour of Zn(II) complexes were tested *in vitro* against Gram-positive bacteria (*Bacilus subtilis, Enterococcus faecalis, Listeria monocytogenes* and *Staphylococcus aureus*), Gram-negative bacteria (*Esherichia coli, Pseudomonas aeruginosa* and *Salmonella enteritidis*) and yiest Candida *albicans* and it has been shown that Zn(II) complex with isophthalate ion exhibited the best activity against *Listeria monocytogenes* and *Esherichia coli* [2]. The relationship between the antimicrobial behavior of complexes and their crystal structures is discussed.

[1] L. Radovanović, J. Rogan, D. Poleti, M.V. Rodić, N. Begović, *Inorg. Chim. Acta*, 445 (2016) 46–56.

[2] L. Radovanović, J. Rogan, D. Poleti, M. Milutinović, M.V. Rodić, *Polyhedron*, **112** (2016) 18–26.

[3] D. Poleti, J. Rogan, M.V. Rodić, L. Radovanović, *Acta Crystallogr.*, C71 (2015) 110–115.

[4] L. Radovanović, J. Rogan, D. Poleti, M.V. Rodić, Z. Jagličić, J. Serb. Chem. Soc., 82 (2017) 1247–1258.

[5] L. Radovanović, J. Rogan, D. Poleti, M.V. Rodić, Z. Jagličić, Acta Chim. Slo., 65 (2018) 191–198.

USMENA SAOPŠTENJA ORAL PRESENTATIONS

KRISTALNA STRUKTURA S-METIL DERIVATA TIOSALICILNE KISELINE

<u>M. Nikolić</u>^a, M. Mijajlović^a, A. Bukonjić^a, D. Tomović^a, A. Stanković^a, V. Jevtić^b, Z. Ratković^b, S. Trifunović^b, I. Potočňák^c, E. Samoľová^c, G. Radić^a

^a Univerzitet u Kragujevcu, Srbija, Fakultet medicinskih nauka, Odsek za farmaciju, Svetozara Markovića 69, 34000 Kragujevac; ^b Institut za hemiju, Prirodno-matematički fakultet, Radoja Domanovića 12, 34000 Kragujevac, Republika Srbija; ^c Institute of Chemistry, Faculty of Science, P.J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia

e-mail: milos.nikolic@medf.kg.ac.rs

S-metil derivat tiosalicilne kiseline dobijen je reakcijom alkilovanja tiosalicilne kiseline pomoću metil-bromida u baznom rastvoru voda-etanol. Etanol je zatim uparen iz reakcione smeše na vodenom kupatilu. Razblažena hlorovodonična kiselina je dodavana vodenom rastvoru u cilju taloženja liganda. Beli talog S-metil derivata tiosalicilne kiseline ispran je vodom i sušen na vakuumu tokom noći. Monokristali pogodni za rendgensku strukturnu analizu dobijeni su prekristalizacijom iz sistema etanol-voda.

Kristalografski podaci: empirijska formula C₈H₈O₂S, $M_r = 168,20$, talasna dužina 1,54184 Å, monoklinični kristalni sistem, $P2_1/c$ prostorna grupa, veličina kristala 0,082 × 0,052 × 0,035 mm³, dimenzije jedinične ćelije a = 4,3642(1) Å, b = 14,5566(2) Å, c = 11,6710(1) Å, $\beta = 92,488(1)^\circ$, V = 740,74(2) Å³, Z = 4, gustina 1,508 g cm⁻³, apsorpcioni koeficijent 3,403 mm⁻¹.

Struktura je utačnjena primenom SHELXT [1] i naknadnom Fourier sintezom korišćenjem SHELXL [2], koji je implementiran u WinGX programski paket [3]. Analiza dužina veza i uglova sprovedena je korišćenjem SHELXL i PLATON [4]. DIAMOND je korišćen za molekularnu grafiku. Konačni *R* indeksi $[I > 2\sigma(I)] R_1 = 0,0241, wR_2 = 0,0594.$

Slika 1. Kristalna struktura S-metil derivata tiosalicilne kiseline

[1] G. M. Sheldrick, Acta Crystallogr., A71 (2015) 3-8.

[2] G. M. Sheldrick, Acta Crystallogr., C71 (2015) 3-8.

[3] L. J. Farrugia, J. Appl. Crystallogr., 32 (1999) 837-838.

[4] A. L. Spek, Acta Crystallogr., D65 (2009) 148–155.

CRYSTAL STRUCTURE OF S-METHYL DERIVATIVE OF THIOSALICYLIC ACID

<u>M. Nikolić</u>^a, M. Mijajlović^a, A. Bukonjić^a, D. Tomović^a, A. Stanković^a, V. Jevtić^b, Z. Ratković^b, S. Trifunović^b, I. Potočňák^c, E. Samoľová^c, G. Radić^a

^a University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac; ^b Department of Chemistry, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia; ^c Institute of Chemistry, Faculty of Science, P.J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia

e-mail: milos.nikolic@medf.kg.ac.rs

S-methyl derivative of thiosalicylic acid was prepared by alkylation of thiosalicylic acid by methyl bromide in alkaline water-ethanol solution. Ethanol was then evaporated on a water bath from the resulting reaction mixture. The diluted hydrochloric acid was added to the resulting aqueous solution in order to achieve the precipitation of the ligand. The white precipitate of the S-methyl derivative of thiosalicylic acid was filtered, washed with water and dried under vacuum overnight. Single crystals suitable for X-ray structural analysis were obtained by recrystallization from the ethanol-water system.

Crystallographic data: empirical formula C₈H₈O₂S, $M_r = 168.20$, wavelength 1.54184 Å, monoclinic crystal system, $P2_1/c$ space group, crystal size $0,082 \times 0,052 \times 0,035 \text{ mm}^3$, unit cell dimensions a = 4.3642(1) Å, b = 14.5566(2) Å, c = 11.6710(1) Å, $\beta = 92.488(1)^\circ$, V = 740.74(2) Å³, Z = 4, density 1.508 g cm⁻³, absorption coefficient 3.403 mm⁻¹.

The structure was solved by SHELXT [1] and subsequent Fourier syntheses using SHELXL [2], implemented in WinGX program suit [3]. The analysis of bond distances and angles was carried out using SHELXL and PLATON [4]. DIAMOND was used for molecular graphics. Final *R* indices $[I > 2\sigma(I)] R_1 = 0.0241$, $wR_2 = 0.0594$.

Figure 1. Crystal structure of S-methyl derivative of thiosalicylic acid

G. M. Sheldrick, Acta Crystallogr., A71 (2015) 3–8.
 G. M. Sheldrick, Acta Crystallogr., C71 (2015) 3–8.
 L. J. Farrugia, J. Appl. Crystallogr., 32 (1999) 837–838.
 A. L. Spek, Acta Crystallogr., D65 (2009) 148–155.

КРИСТАЛНЕ СТРУКТУРЕ ДВА НОВА КОНЈУГАТА ФЕРОЦЕНА СА СТЕРОИДНИМ ХОРМОНИМА

В. Раичевић^а, М. Родић^а, М. Сакач^а, Т.-О. Knedel^b, C. Janiak^b

^а Департман за хемију, биохемију и заштиту животне средине, Природноматематички факултет, Универзитет у Новом Сад, Трг Доситеја Обрадовића 3, 21000 Нови Сад, Србија. ^b Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany

e-mail: vidak.raicevic@dh.uns.ac.rs

Конјугати фероцена са стероидним хормонима од интереса су као потенцијални агенси против хормон-зависних тумора [1]. У реакцији (фероценилметил)триметиламонијум-јодида са естроном, ендогеним естрогеним хормоном, добијени су 3-(фероценилметокси)естра-1,3,5(10)-триен-17-он (1) и 4-(фероценилметил)-3-хидроксиестра-1,3,5(10)-триен-17-он (2) у облику монокристала погодних за рендгенску структурну анализу.

Кристалографски подаци за 1: C₂₉H₃₂FeO₂, орторомбични кристални систем, $P2_12_12_1$, a = 6,7898(10) Å, b = 12,1966(18) Å, c = 27,257(4) Å, V = 2257,3(6) Å³, Z = 4, измерено рефлексија 5150, утачњавано параметара 290, број ограничења 0, $R_1 = 0,053$, $wR_2 = 0,114$, S = 0,922, Flack x = -0,03(2).

Кристалографски подаци за **2**: $C_{29}H_{32}FeO_2$, орторомбични кристални систем, $P2_12_12_1$, a = 7,4416(3) Å, b = 13,1083(7) Å, c = 23,9139(13) Å, V = 2332,7(2) Å³, Z = 4, измерено рефлексија 5381, утачњавано параметара 338, број ограничења 179, $R_1 = 0,098$, $wR_2 = 0,268$, S = 1,088, Flack x = 0,10(7).

[1] E.A. Hillard, A. Vessières, G. Jaouen, y *Medicinal Organometallic Chemistry*,
 G. Jaouen, N. Metzler-Nolte (уред.), New York (2010) 81.

CRYSTAL STRUCTURES OF TWO NOVEL FERROCENE–STEROID HORMONE CONJUGATES

V. Raičević^a, M. Rodić^a, M. Sakač^a, T.-O. Knedel^b, C. Janiak^b

^a Department of Chemistry, Biochemistry and Envirnonmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia. ^b Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany e-mail: vidak.raicevic@dh.uns.ac.rs

Ferrocene-steroid hormone conjugates are of interest as potential agents against hormone-dependent tumors [1]. In the reaction of (ferrocenylmethyl)trimethylammonium iodide with estrone, an endogeneous estrogen hormone, 3-(ferrocenylmethoxy)estra--1,3,5(10)-trien-17-one (1) and 4-(ferrocenylmethyl)-3-hydroxyestra-1,3,5(10)-trien-17-one (2) were obtained in the form of single crystals suitable for X-ray crystallography.

Crystallographic data for 1: C₂₉H₃₂FeO₂, orthorhombic crystal system, $P2_12_12_1$, a = 6.7898(10) Å, b = 12.1966(18) Å, c = 27.257(4) Å, V = 2257.3(6) Å³, Z = 4, no. of reflections measured 5150, no. of parameters refined 290, no. of restraints 0, $R_1 = 0.053$, $wR_2 = 0.114$, S = 0.922, Flack x = -0.03(2).

Crystallographic data for **2**: C₂₉H₃₂FeO₂, orthorhombic crystal system, $P2_12_12_1$, a = 7.4416(3) Å, b = 13.1083(7) Å, c = 23.9139(13) Å, V = 2332.7(2) Å³, Z = 4, no. of measured reflections 5381, no. of parameters refined 338, no. of restraints 179, $R_1 = 0.098$, $wR_2 = 0.268$, S = 1.088, Flack x = 0.10(7).

[1] E.A. Hillard, A. Vessières, G. Jaouen, in *Medicinal Organometallic Chemistry*, G. Jaouen, N. Metzler-Nolte (eds.), New York (2010) 81.

MONOMER I KOORDINACIONI POLIMER SREBRA(I) SA ORGANSKIM TIOCIJANATNIM LIGANDOM: STRUKTURNA I *IN SILICO* STUDIJA

T. Todorović^a, P. Ristić^a, G. Janjić^b, I. Marjanović^c, O. Klisurić^c, N. Filipović^d

^a Univerzitet u Beogradu – Hemijski fakultet; ^b IHTM, Centar za hemiju, Univerzitet u Beogradu; ^c Univerzitet u Novom Sadu – Prirodno-matematički fakultet; ^d Univerzitet u Beogradu – Poljoprivredni fakultet e-mail: tamarat@chem.bg.ac.rs

Prvi kompleksi 2-piridiltiocijanta (L) i srebro-nitrata (1) i perhlorata (2) su sintetisani i okarakterisani difrakcijom rendgenskih zraka sa monokristala. Zajednički strukturni motiv oba kompleksa je koordinacija dva L molekula preko piridinskog atoma azota za Ag(I). Geometrija oko Ag(I) u kompleksu 1 je deformisana, oblika slova T, gde treće koordinaciono mesto zauzima atom kiseonika O1 iz nitratnog jona. Međutim, uzevši u obzir rastojanje između atoma Ag1 i atoma O1(2) (2: $\frac{1}{2}-x, -\frac{1}{2}-y, z)$ iz susednog nitratnog iona, koordinacioni broj Ag(I) u 1 može takođe biti opisan kao 3+1 (slika 1). U kompleksu 2 geometrije klackalice, koordinacioni broj Ag(I) je četiri (slika 2). U unutrašnjoj sferi kompleksa treće koordinaciono mesto zauzima atom kiseonika O3 iz perhloratnog anjona, dok četvrto mesto zauzima atom azota N2(4) (4: x, y-1, z) tiocijanatne grupe susednog liganda. Iako se nitratni i perhloratni joni mogu koordinovati za jone metala, njihova tendencija ka koordinaciji je daleko manje izražena u poređenju sa ostalim uobičajenim anjonima. Pretragom Kembričke strukturne baze i analizom relevantnih geometrijskih parametara utvrđena je tendencija koordinacije nitratnog i perhloratnog jona za Ag(I). Sa stanovišta strukturne hemije, dužine veza i uglovi između veza su najbitnije karakteristike molekula. Da bismo ispravno opisali prirodu Ag-O veza u kompleksima 1 i 2, kao i pakovanja u ovim strukturama, urađena je topološka analiza primenom kvantne teorije atoma u molekulu.

Slika 1. ORTEP prikaz struktre **1** sa numeracijom ne-vodoničnih atoma. Termalni elipsoidi su prikazani sa 30% verovatnoće; H-atomi su sfere proizvoljnog radijusa. Dodatne veze su označene svetlo-plavom bojom. Simetrijske transformacije: (1) $\frac{1}{2}-x$, $\frac{1}{2}+y$, z; (2) $\frac{1}{2}-x$, $-\frac{1}{2}-y$, z.

Figure 1. ORTEP drawing of the structure of **1** with labeling of non-H atoms. Displacement ellipsoids are shown at the 30% probability level and H atoms are drawn as spheres of arbitrary radii. Additional bonds are shown in light blue. Symmetry codes: (1) $\frac{1}{2-x}, \frac{1}{2+y}, z$; (2) $\frac{1}{2-x}, -\frac{1}{2-y}, z$.

SILVER(I)-BASED MONOMER AND COORDINATION POLYMER WITH ORGANIC THIOCYANATE LIGAND: STRUCTURAL AND *IN SILICO* STUDY

T. Todorović^a, P. Ristić^a, G. Janjić^b, I. Marjanović^c, O. Klisurić^c, N. Filipović^d

^{*a*} University of Belgrade – Faculty of Chemistry; ^{*b*} ICTM, Department of Chemistry, University of Belgrade; ^{*c*} University of Novi Sad – Faculty of Sciences; ^{*d*} University of Belgrade – Faculty of Agriculture e-mail: tamarat@chem.bg.ac.rs

The first complexes of 2-pyridylthiocyante (L) and silver nitrate (1) and perchlorate (2) were prepared and characterized by a single crystal X-ray analysis (XRD). The common structural motif of both 1 and 2 is coordination of two L molecules via pyridine nitrogen atom to Ag(I). Geometry of Ag(I) in 1 is deformed T-shaped, where third coordination site is occupied by one oxygen atom (O1) from nitrate. However, taking into account the distance between Ag1 and O1(2) (2: $\frac{1}{2}-x, -\frac{1}{2}-y, z$) atom from another nitrate ion, the coordination number of Ag(I) in 1 can be described also as 3+1 (Figure 1). In 2, Ag(I) ion has coordination number four (Figure 2) with a seesaw geometry. In the inner sphere of the complex a third coordination site is occupied by oxygen atom O3 from perchlorate ion, while fourth coordination site is occupied by nitrogen atom N2(4) (4: x, y-1, z) of a thiocyanate group from neighboring ligand. Although nitrate and perchlorate ions do form complexes with metal cations, the tendency of these ions to coordinate is less than for other common ions. In order to check the propensity of perchlorate and nitrate towards coordination to Ag(I), a Cambridge Structural Database survey has been performed. For the structural chemistry, bond distances and angles are the most important molecular characteristics aimed at. In order to properly describe the nature of Ag-O bonds in 1 and 2, as well as crystal packings in respective structures, a Quantum Theory of Atoms in Molecule (QTAIM) topological analysis was performed.

Figure 2. ORTEP drawing of the structure of 2 with labeling of non-H atoms. Displacement ellipsoids are shown at the 30% probability level and H atoms are drawn as spheres of arbitrary radii. Symmetry codes: (3) x, y+1, z; (4) x, y-1, z.

Slika 2. ORTEP prikaz struktre **2** sa numeracijom ne-vodoničnih atoma. Termalni elipsoidi su prikazani sa 30% verovatnoće; H-atomi su sfere proizvoljnog radijusa. Simetrijske transformacije: (3) x, y+1, z; (4) x, y-1, z.

3D KOORDINACIONI POLIMER Ag(I) SA PIPERAZIN 1,4-DIKARBONITRILOM

P. Ristić^a, I. Marjanović^b, O. Klisurić^b, N. Filipović^c, T. Todorović^a

^a Univerzitet u Beogradu – Hemijski fakultet; ^b Univerzitet u Novom Sadu – Prirodnomatematički fakultet ; ^c Univerzitet u Beogradu – Poljoprivredni fakultet e-mail: predrag@chem.bg.ac.rs

Bez obzira na raznolikost struktura koordinacionih polimera, njihova karakteristična arhitektura je zasnovana na relativno malim organskim molekulima koji su u najvećem broju slučajeva O ili N donori [1]. Ligand piperazin 1,4-dikarbonitril (L) je upotrebljen za sintezu novog Ag(I) 3D koordinacionog polimera opšte formule ${[Ag(L)_2]ClO_4}_n$.

Slika 1. ORTEP prikaz dela strukture koordinacionog polimera Ag(I) sa numeracijom ne-vodoničnih atoma. Termalni elipsoidi su prikazani sa 30% verovatnoće.

Sintetisani kompleks kristališe u ortorombičnom kristalnom sistemu, u prostornoj grupi Pnnn. Struktura koordinacionog polimera se sastoji od jednog jona metala, dva L liganda koordinovana bis-monodentatno preko atoma azota, i jednog perhloratnog anjona (Slika 1). Svaki Ag(I) jon se nalazi u tetraedarskom okruženju četiri atoma azota iz četiri različita L liganda. Geometrijski indeks distorzije (τ_4) iznosi 0,956 [2]. Topološka analiza [3] je pokazala da postoje dva kristalografski različita Ag(I) jona. Prvi gradi dve interpenetrirajuće mreže koje su povezane translacijom (12,61 Å) duž pravca a-ose (klasa Ia). Drugi Ag(I) jon gradi četiri interpenetrirajuće mreže koje su, pored translacije duž pravca a-ose za 12,61 Å, povezane i preko centra inverzije (klasa IIIa).

A.Y. Robin, K.M. Fromm, *Coord. Chem. Rev.*, **250** (2006) 2127–2157.
 L.Yang, D.R. Powell, R.P. Houser, *Dalton Trans.*, (2007) 955–964.
 V.A. Blatov, A.P. Shevchenko, D.M. Proserpio, *Cryst. Growth Des.*, **14** (2014) 3576–3586.
Ag(I) 3D COORDINATION POLYMER WITH PIPERAZINE 1,4-DICARBONITRILE

P. Ristić^a, I. Marjanović^b, O. Klisurić^b, N. Filipović^c, T. Todorović^a

^{*a*} University of Belgrade – Faculty of Chemistry; ^{*b*} University of Novi Sad – Faculty of Sciences; ^{*c*} University of Belgrade – Faculty of Agriculture e-mail: predrag@chem.bg.ac.rs

Despite the variety in coordination polymers' (CP) structure their characteristic architecture is based on relatively small organic molecules, which are most often O or N donors [1]. The ligand piperazine 1,4-dicarbonitrile (L) is used for synthesis of novel Ag(I) 3D CP with general formula $\{[Ag(L)_2]CIO_4\}_n$. The obtained complex crystallizes in the

Figure 1. ORTEP drawing of part of the structure of Ag(I) CP with labeled non-H atoms. Displacement ellipsoids are shown at 30% probability, while H atoms are drawn as

orthorhombic crystal system, space group Pnnn. The structure of CP consists of one metal center, two L ligands coordinated bismonodentately via N atom and one perchlorate anion (Figure 1). Each Ag(I) is in tetrahedral environment, coordinated to four nitgoren atoms from four different L ligands. The geometric index of distortion is 0.956 [2]. Topological analysis [3] showed that there are two crystallographically different Ag(I) ions. The first one builds two interpenetrating networks which are related by 12.61 Å translations along the a-axis direction (class Ia). The second Ag(I) ion gives four interpenetrating networks related by 12.61 Å translations along the *a*-axis direction and by an inversion centre (class IIIa).

A.Y. Robin, K.M. Fromm, *Coord. Chem. Rev.*, **250** (2006) 2127–2157.
 L.Yang, D.R. Powell, R.P. Houser, *Dalton Trans.*, (2007) 955–964.
 V.A. Blatov, A.P. Shevchenko, D.M. Proserpio, *Cryst. Growth Des.*, **14** (2014) 3576–3586.

СТРУКТУРНО ИСТРАЖИВАЊЕ ТРОСТРУКОГ ПЕРОВСКИТА Sr₃Fe₂WO₉ И ОДРЕЂИВАЊЕ МАГНЕТНИХ, ДИЕЛЕКТРИЧНИХ И ОПТИЧКИХ КАРАКТЕРИСТИКА

<u>J. Бијелић</u>^a, А. Станковић^a, М. Медвидовић-Косановић^a, П. Коп^b, J. Сун^b, Ђ. Бек^b, Б. Марковић^a, В. Срдић^c, З. Јагличић^{d, e}, А. Куковец^f, J. Поповић^g, Ж. Скоко^h, Б. Смарсли^b, И. Ђерђ^{a,*}

^а Одсек за хемију, Универзитет Ј. Ј. Штросмајера у Осијеку, Цара Хадријана 8/А, 31000 Осијек, Хрватска; ^b Институт за физичку хемију, Јустус Либиг Универзитет у Гисену, Хајнрих Буф Ринг 17, 35392 Гисен, Немачка; ^c Технолошки факултет, Универзитет у Новом Саду, Булевар цара Лазара 1, 21101 Нови Сад, Србија; ^d Институт за математику, физику и механику, Универзитет у Љубљани, Јадранска 19, 1000 Љубљана, Словенија; ^e Грађевински и геодетски факултет, Универзитет у Љубљани, Јамова 2, 1000 Љубљана, Словенија; ^f Факултет природних наука и информатике, Одсек за примењену и еколошку хемију, Универзитет у Сегеду, Рерих Б тер 1, 6720 Сегед, Мађарска; ^g Институт Руђер Бошковић, Завод за физику материјала , Биљеничка 54, 10000 Загреб, Хрватска; ^h Универзитет у Загребу, Природно-математички факлутет, Одсек за физику, Биљеничка 32, 10000 Загреб, Хрватска e-mail: jbijelic@kemija.unios.hr | *igor.djerdj@kemija.unios.hr

Специфична структура перовскитних једињења одговорна је за њихове бројне

интересантнемагнетне, диелектричне и оптичке карактеристике. Показало се да су карактеристике материјала такође зависне од величине и облика честица. Троструки Sr₃Fe₂WO₉ перовскит је синтетисан воденом сол-гел цитратном методом. Електрохемијска мерења и апсорпцијска спектроскопија у видљивом и ултраљубичастом делу спектра су показали да је Fe^{3+} стабилан након координисања са молекулама амонијака. Структурна истраживања су спроведена амбијенталном и неамбијенталном рентгенском дифракцијом на поликристалу, рентгенском фотоелектронском спектроскопијом, трансмисионом електронском микроскопијом велике резолуције, електронском дифракцијом на одабраној површини, термогравиметријском анализом, инфрацрвеном спектроскопијом И неполаризираном Рамановом спектроскопијом. Показано је да једињење кристалише у тетрагоналном систему (просторна група I4/m) са величином кристалита од 36 nm, велике кристалиничности и настаје на 1273 К. Магнетне карактеристике показују феримагнетно уређење на 373 К. Диелектрична мерења су показала пропорционалну зависност диелектричне константе од температуре и обрнуто пропорционалну зависност од фреквенције. Оптичке карактеристике одређене су Таук методом где се показало да су вредности директног енергијског процепа 2,71 eV и индиректног енергијског процепа 2,10 eV. Аутори се захваљују Хрватској заклади за знаност (IP-2016-06-3115) за потпуну финансијску подршку.

STRUCTURAL INVESTIGATION OF TRIPLE PEROVSKITE Sr₃Fe₂WO₉ AND DETERMINATION OF MAGNETIC, DIELECTRIC AND OPTICAL PROPERTIES

<u>J. Bijelić</u>^a, A. Stanković^a, M. Medvidović-Kosanović^a, P. Cop^b, Y. Sun^b, G. Beck^b, B. Marković^a, V. Srdić^c, Z. Jagličić^{d, e}, A. Kukovecz^f, J. Popović^g, Ž. Skoko^h, B. Smarsly^b, I. Djerdj^{a*}

^a Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; ^b Institute for Physical Chemistry, Justus Liebig University of Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany; ^c Faculty of Technology, University of Novi Sad, Boulevard cara Lazara 1, 21101 Novi Sad, Serbia; ^d Institute of Mathemathics, Physics & Mechanics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia; ^e Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, SI-1000 Ljubljana, Slovenia; ^fFaculty of Science and Informatics, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B ter 1, H-6720, Szeged, Hungary; ^g Ruđer Bošković Institute, Institute for Materials Physics, Bijenička 54, 10000 Zagreb, Croatia; ^h University of Zagreb, Faculty of Science, Department of Physics, Bijenička 32, 10000 Zagreb, Croatia e-mail: jbijelic@kemija.unios.hr | *igor.djerdj@kemija.unios.hr

Specific structure of perovskite compounds provides them with various interesting magnetic, dielectric and optical properties. It has become very trendy to alter particle size instead of altering chemical composition since the properties of materials have appeared to be size- and shape-dependent. Triple Sr₃Fe₂WO₉ perovskite has been prepared in form of semi-spherical particle agglomerates using a modified aqueous sol-gel citrate route. Synthesis mechanism and redox properties of precursor metal salts in aqueous solution have been studied by electrochemical measurements and UV/VIS absorbance spectroscopy where it has been observed that Fe³⁺ is stable after coordination with ammonia molecules. Structural investigation has been conducted by ambient and *in situ* X-ray powder diffraction (XPRD), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) and unpolarized Raman spectroscopy and it has been observed that synthesized compound crystallizes in tetragonal system (space group I4/m) with crystallite size of 36 nm and high crystallinity and fully transforms into desired perovskite compound at 1273 K. Magnetic properties have been determined using SQUID measurements and have shown ferrimagnetic ordering at 373 K. Dielectric properties have revealed a proportional increase of dielectric constant with temperature and reverse proportional decrease with frequency. Optical properties have been estimated using Tauc method which revealed band gap values of 2.71 eV for direct band gap and 2.10 eV for indirect band gap. Authors acknowledge Croatian Science Foundation (IP-2016-06-3115) for full financial support.

INVERZNE GRANICE U ZnO DOPIRANOM ANTIMONOM: HRTEM i DFT STUDIJA

V. Ribić^a, A. Rečnik^b, J. Rogan^c, Z. Branković^a, G. Branković^a

^a Institut za multidisciplinarna istraživanja, Univerzitet u Beogradu, Kneza Višeslava 1, 11030 Beograd, Srbija; ^b Institut Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia ^c Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Karnegijeva 4, 11120 Beograd, Srbija;

e-mail: vesna.ribicka@gmail.com

Vurcitni ZnO kristališe u prostornoj grupi $P6_3mc$ sa parametrima jedinične ćelije: a = 3,253 i c = 5,213 Å, u = 0,382. U ovoj modifikaciji postoje dva tipa tetraedarskih intersticija, tip-1 i tip-2, koji su duž *c*-ose međusobno orijentisani u suprotnom smeru, dok se oktaedarske intersticije nalaze između njih. Atomi cinka zauzimaju samo jedan tip tetraedarskih intersticija, što za posledicu ima necentrosimetričnu strukture i polarne *c*-ose. Polarni vektor je usmeren od Zn ka O direktno iznad (α A). Specifični dopanti kao što su In₂O₃, Fe₂O₃, Mn₂O₃, Ga₂O₃, SiO₂, SnO₂, TiO₂ i Sb₂O₃ uzrokuju inverziju polarnosti u ZnO i na taj način formiraju inverzne granice (IG). Zajedno sa greškama slaganja bazalnih ravni, IG su najčešći tip planarnih defekata. U zavisnosti od tipa inverzije, konfiguracija polarnih osa može biti glava-glava (\rightarrow | \leftarrow) ili rep-rep (\leftarrow | \rightarrow) preko IG. IG su pretežno u bazalnim ravnima (b-IG), ali sa nekim dopantima, kao što je Ga₂O₃, se protežu duž piramidalnih ravni strukture ZnO (p-IG).

U ovom istraživanju ispitali smo strukturu b-IG u Sb-dopiranoj ZnO keramici na osnovu proračuna baziranih na teoriji funkcionala gustine (DFT) i transmisione elektronske mikroskopije visoke rezolucije (HRTEM). Analizirali smo sve modele o inverznim granicama i greškama slaganja koji su do sada bili objavljeni u literaturi. Nakon detaljne analize podataka, identifikovano je pet mogućih translacionih stanja za IG, od kojih su tri eksperimentalno primećene [1–3]. Koristeći DFT implementiran u Quantum-Espresso programskom paketu, modeli IG su strukturno optimizovani i analizirani u pogledu stabilnosti kod dopiranja antimonom. U ispitivanim slučajevima dobili smo dobro poklapanje eksperimentalnih i izračunatih rezultata za dva modela. Kombinovanjem teorijskih rezultata sa eksperimentalnim, otkrili smo nov model za ZnO koji je dopiran antimonom

[1] A. Rečnik et al., J. Am. Ceram. Soc., 84 (2001) 2657-2668.

[2] A. Goldstein et al., ACS Nano, 7 (2013) 10747–10751.

[3] J. Hoemke et al., J. Am. Ceram. Soc., 100 (2017) 4252-4256.

INVERSION BOUNDARIES IN Sb-DOPED ZnO: HRTEM AND DFT STUDY

V. Ribić^a, A. Rečnik^b, J. Rogan^c, Z. Branković^a, G. Branković^a

^a Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia; ^b Jožef Stefan Institute, Ljubljana, Slovenia; ^c Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia e-mail: vesna.ribicka@gmail.com

ZnO predominantly crystalizes in a wurtzite structure, s.g. $P6_3mc$, with unit cell parameters: a = 3.253 and c = 5.213 Å, u = 0.382. In this structure there are two types of tetrahedral interstices, type-I and type-II, that point in opposite directions along the *c*-axis, while octahedral interstices in-between. Only one type of tetrahedral sites is occupied with zinc atoms, which results in the noncentrosymmetric nature of this structure and defines the polar *c*-axis. The polar vector points from Zn to O atom directly above (αA). Specific dopants, such as In₂O₃, Fe₂O₃, Mn₂O₃, Ga₂O₃, SiO₂, SnO₂, TiO₂ and Sb₂O₃, can induce inversion of polarity in ZnO by generating inversion boundaries (IBs). Together with basal plane stacking faults (SFs), IBs are the most common type of planar defects. Depending on the type of inversion the polar axis can be head-to-head ($\rightarrow |\leftarrow$) or tail-to-tail ($\leftarrow |\rightarrow$) oriented across IB. IBs predominantly lie in basal planes (b-IB), but with some dopants, such as Ga₂O₃, they extend along the pyramidal planes of ZnO structure (p-IB).

In our study we investigated the atomic structure of b-IBs in Sb-doped ZnO ceramics by density functional theory (DFT) calculations and high-resolution transmission electron microscopy (HRTEM). We first reviewed all the models that were reported in the literature regarding inversion boundaries and stacking faults. After a detailed analysis of the literature data, five different translational states for IBs were identified, wherein three of them were experimentally observed [1–3]. Using DFT implemented in the Quantum-Espresso package, the IBs models were structurally optimized and analyzed in terms of stability for Sb-doping. In the examined cases we obtained a good match between the experimental results and the calculated ones for two of the translations. By combining theoretical results with experimental ones, we discovered new model for Sb-doped ZnO.

^[1] A. Rečnik et al., J. Am. Ceram. Soc., 84 (2001) 2657-2668.

^[2] A. Goldstein et al., ACS Nano, 7 (2013) 10747–10751.

^[3] J. Hoemke et al., J. Am. Ceram. Soc., 100 (2017) 4252-4256.

FASCINANTNE V–O VEZE. EKSPERIMENTALNA I TEORIJSKA ANALIZA GUSTINE NAELEKTRISANJA I AIM ANALIZA RAZLIČITIH POLIOKSOVANADATA

<u>A. Spasojević-de Biré</u>^{a,b}, N. Bošnjaković-Pavlović^{a,b}, X. Xu^{a,b}, S. Novakovic^c, J.-M. Gillet^{a,b}

^a Université Paris-Saclay, CentraleSupélec, Campus de Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; ^b CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Campus de Gif, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; ^cInstitut za nuklearne nauke Vinča, Laboratorija za teorijsku fiziku i fiziku kondenzovane materije, PP 522, Univerzitet u Beogradu, 11001 Beograd, Srbija e-mail:anne.spasojevic@centralesupelec.fr

Strukturna karakteristika jedinjenja tipa polioksovanadata (POV) jeste da se u jednom molekulu može naći više V–O veza različitih dužina (od 1,608(1) do 1,241(1) Å). U poslednjih deset godina, realizovali smo četiri eksperimentalne analize raspodele gustine naelektrisanja u POV jedinjenjima i takođe analizirali njihove topološke karakteristike [1]. Paralelno, primenili smo teorijsku AIM analizu na različitim funkcionalizovanim heksavanadatima. Veoma dobra saglasnost između eksperimentalnih i teorijskih vrednosti omogućila nam je da bolje razumemo prirodu V–O veze. Primena različiti kriterijuma koje je Gatti [2] postavio na osnovu QTAIM analiza daje nam sliku veze ovog tipa. Različiti parametri korišćeni za karakterizaciju ove veze biće razmatrani u ovoj prezentaciji.

Slika (Levo) Zavisnost gustine naelektrisanja $\rho(\mathbf{r}_{\cdot})(A)$ od eksperimentalno određenih V–O rastojanja. (Desno) Laplasijan elektronske gustine $\nabla^2 \rho(\mathbf{r}_{\cdot})$ (eA^{-5}) u funkciji $H(\mathbf{r}_{\cdot})$ (a.u.) za V6 (eksperimentalno i teorijski). Sivi kvadrati predstavljaju oblasti koje je definisao Gatti [2]. Zeleni kvadrat-nova oblast nazvana intermedijer n°2.

[1] a) G.A. Bogdanovic *et al*, J. Serb. Chem. Soc., **72** (2007) 545-554. b) N. Bosnjakovic-Pavlovic *et al*, Inorg. Chem., **48** (2009) 9742–9753. c) X. Xu *et al*, Phys. Chem. Chem. Phys., **19** (2017) 18162–18166.
[2] G. Gatti, J. Kristellager, **230** (2005) 200, 457.

[2] C. Gatti, Z. Kristallogr., 220 (2005) 399-457.

INTO THE FASCINATING V-O BOND. EXPERIMENTAL, THEORETICAL CHARGE DENSITY AND AIM STUDIES OF DIFFERENT POLYOXOVANADATE COMPOUNDS

<u>A. Spasojević-de Biré</u>^{a,b}, N. Bošnjaković-Pavlović^{a,b}, X. Xu^{a,b}, S. Novakovic^c, J.-M. Gillet^{a,b}

^a Université Paris-Saclay, CentraleSupélec, Campus de Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; ^b CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Campus de Gif, 8-10 rue Joliot-Curie,91190 Gif-sur-Yvette, France; ^c Vinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia e-mail:anne.spasojevic@centralesupelec.fr

Polyoxovanadate (POV) compounds have the structural specificities to possesses in the same molecule V–O bonds of a wide various V–O interatomic distances (from 1.608(1) to 1.241(1) Å). During the last decade, we have realized 4 experimental charge density studies on POV, for which we have been able to determine a topology analysis [1]. Parallely, we have determined the theoretical AIM study of different functionalized hexavanadates. The very good agreement between experimental and theoretical values allows us to go deeply into the nature of the V–O bond. The different criteria established by Gatti [2] from the QTAIM studies give a picture of this bond. The different tools used for characterization of a bond will be discussed in this talk.

Figure (Left) Behavior of $\rho(\mathbf{r}_c)(\mathring{A})$ versus V–O interatomic distance from experimental values. (Right) $\nabla \rho(\mathbf{r}_c)$ ($e\mathring{A}^{-5}$) as a function of $H(\mathbf{r}_c)$ (a.u.) for the V6 (experimental and theoretical). The grey squares represent the region defined by Gatti [2]. The green square the new region, named intermediate n°2.

[1] a) G.A. Bogdanovic *et al*, J. Serb. Chem. Soc., **72** (2007) 545-554. b) N. Bosnjakovic-Pavlovic *et al*, Inorg. Chem., **48** (2009) 9742–9753. c) X. Xu *et al*, Phys. Chem. Chem. Phys., **19** (2017) 18162–18166.

[2] C. Gatti, Z. Kristallogr., 220 (2005) 399-457.

XXVI Конференција Српског кристалографског друштва

УЛОГА МЕЂУМОЛЕКУЛСКИХ ИНТЕРАКЦИЈА У КРИСТАЛНОМ ПАКОВАЊУ 3-ИЗОПРОПИЛ И 3-ЦИКЛОПРОПИЛ ДЕРИВАТА ФЕНИТОИНА

<u>Н. Тришовић</u>^а, Л. Радовановић^b, Г. В. Јањић^c, С. Т. Јелић^d, Ј. Роган^a

^а Технолошко-металуршки факултет, Универзитет у Београду, Карнегијева 4, 11000 Београд, Србија; ^b Иновациони центар Технолошко-металуршког факултета, Карнегијева 4, 11000 Београд, Србија; ^c Институт за хемију, технологију и металургију, Универзитет у Београду, Његошева 12, 11000 Београд; ^d Институт за мултидисциплинарна истраживања, Универзитет у Београду, Кнеза Вишеслава 1, 11000 Београд, Србија e-mail: ntrisovic@tmf.bg.ac.rs

Синтетисана су два деривата фенитоина (5,5-дифенилхидантоина) и одређене су њихове кристалне структуре. Урађена је квантитативна анализа кристалног паковања са аспекта међумолекулских интеракција и структурних мотива. Кристално паковање 3-изопропил-5,5-дифенилхидантоина садржи центросиметричне димере повезане паром N–H…O водоничних веза који се даље умрежавају помоћу С–H…O интеракција и паралелних интеракција између фенилних прстенова на великом растојању у ланце паралелне *с*-оси (слика 1). Основна карактеристика кристалне структуре 3-циклопропил-5,5-дифенилхидантоина јесу ланци који настају преко N–H…O водоничних веза, С–H…O и С–H… π интеракција (слика 2). Представљено истраживање даје увид у улогу међумолекулских интеракција у кристалном паковању проучаваних једињења, као и даље смернице за дизајнирање нових деривата фенитоина са побољшаним фармацеутским својствима.

Слика 1. Центросиметрични R₂²(8) прстен 3-изопропил-5,5-дифенилхидантоина.

Структурни подаци 3-изопропил-5,5-дифенилхидантоина: $C_{18}H_{18}N_2O_2$, триклиничан систем, просторна група *P*–1, *a* = 8,5357(9), *b* = 8,6225(8), *c* = 12,3979(9) Å, *a* = 104,010(7), *β* = 91,826(7), *γ* = 115,201(10) °, *V* = 791,54(14) Å³, *R*₁ = 0,0473.

Структурни подаци3-циклопропил-5,5-дифенилхидантоина: C₁₈H₁₆N₂O₂, моноклиничан систем, просторна група $P2_1/c$, a = 11,5996(5), b = 10,6459(3), c = 12,2992(5) Å, $\beta = 101,977(4)$ °, V = 1485,74(10) Å³, $R_1 = 0,0403$.

THE ROLE OF INTERMOLECULAR INTERACTIONS IN THE CRYSTAL PACKING OF 3-ISOPROPYL AND 3-CYCLOPROPYL DERIVATIVES OF PHENYTOIN

N. Trišović^a, L. Radovanović^b, G. V. Janjić^c, S. T. Jelić^d, J. Rogan^a

^a Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; ^b Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia; ^c Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; ^d Institute for MultidisciplinaryResearch, University of Belgrade, KnezaVišeslava 1, 11000 Belgrade, Serbia

e-mail: ntrisovic@tmf.bg.ac.rs

Two derivatives of phenytoin (5,5-diphenylhydantoin) were synthesized and their crystal structures were determined. The quantitative analysis of the crystal packings in terms of the contributing intermolecular interactions and structural motifs has been done. The crystal packing of 3-isopropyl-5,5-diphenylhydantoin contains centrosymmetric dimers linked by paired N–H···O hydrogen bonds which further self-organize through pairs of C–H···O interactions and a parallel interaction of two phenyl rings at a large offset into chains running along the *c*-axis (Figure 1). The principal feature of the crystal structure of 3-cyclopropyl-5,5-diphenylhydantoin of the chains by N–H···O hydrogen bonds, C–H···O and C–H··· π interactions (Figure 2). The presented investigation provide not only new insight into the role of intermolecular interactions in the crystal packing, but also guidance for furthering crystal engineering to design novel hydantoin derivatives with improved pharmaceutical properties.

Figure 2. Supramolecular chain of 3-cyclopropyl-5,5-diphenylhydantoin along the c-axis.

Crystal data for 3-isopropyl-5,5-diphenylhydantoin: C₁₈H₁₈N₂O₂, triclinic, *P*-1, a = 8.5357(9), b = 8.6225(8), c = 12.3979(9) Å, $\alpha = 104.010(7)$, $\beta = 91.826(7)$, $\gamma = 115.201(10)$ °, V = 791.54(14) Å³, $R_1 = 0.0473$.

Crystal data for 3-cyclopropyl-5,5-diphenylhydantoin: C₁₈H₁₆N₂O₂, monoclinic, *P*2₁/*c*, a = 11.5996(5), b = 10.6459(3), c = 12.2992(5) Å, $\beta = 101.977(4)$ °, V = 1485.74(10) Å³, $R_1 = 0.0403$.

СТЕКИНГ ИНТЕРАКЦИЈЕ СА ВЕЛИКИМ ХОРИЗОНТАЛНИМ ПОМЕРАЊИМА И ДИВОДОНИЧНЕ ВЕЗЕ БОРАЗИНА

<u>Д. П. Маленов</u>^{а,б}, А. Ј. Аладић^а, С. Д. Зарић^{а,б}

^а Универзитет у Београду, Хемијски факултет, Студентски трг 12-16, 11000 Београд; ^б Тексас A&M универзитет у Катару, Департман за хемију, п. фах 23874, Доха, Катар

e-mail: malenov@chem.bg.ac.rs

Замена С-С јединица у органским молекулима изоелектонским В-N јединицама може довести до јединствених особина добијених супстанци [1]. Стекинг интеракције боразина (В₃N₃H₆) су стога проучаване и поређене са стекинг интеракцијама бензена [2, 3].

Скенирање површине потенцијалне енергије стекинг интеракција у димеру боразина урађено је на B3LYP-D3/def2-TZVP нивоу теорије, који је у доброј сагласности са CCSD(T)/CBS нивоом [4]. С обзиром да је скенирање урађено за хоризонтална померања до 7,5 Å, пронађен је велики број стабилних димера боразина. Такође, сви минимуми пронађени овим скенирањем су оптимизовани B3LYP-D3/def2-TZVP нивоом теорије.

Најјача стекинг интеракција између молекула боразина има антипаралелну сендвич оријентацију, са CCSD(T)/CBS енергијом интеракције од -3,57 kcal/mol [4], што је јаче од стекинг интеракције између молекула бензена (-2,73 kcal/mol) [2]. На великим хоризонталним померањима (преко 4,5 Å) стекинг интеракције између молекула боразина имају енергије од око -2,0 kcal/mol, што је слично стекинг интеракцијама са великим хоризонталним померањима између молекула бензена [3]. Поред тога, у димерима боразина пронађено је диводонично везивање, а најјаче има енергију од -2,73 kcal/mol. SAPT анализа показала је да је електростатичка компонента енергије најважнија за стабилност ових димера боразина. Све преферентне геометрије и релативне јачине интеракција могу се објаснити посматрањем електростатичких потенцијала боразина [4].

У кристалним структурама боразина пронађене су само стекинг интеракције са великим хоризонталним померањима, као и водонично и диводонично везивање [4]. Иако нису најјаче, ове интеракције су присутне у кристалима због тога што њихове геометрије омогућавају формирање додатних симултаних интеракција, које доприносе свеукупној стабилности супрамолекулских система.

[1] M. Stojanović, M. Baranac-Stojanović, New J. Chem., 42 (2018) 12968-12976.

[2] E.C. Lee, D. Kim, P. Jurečka, P. Tarakeshwar, P. Hobza, K.S. Kim, *J. Phys. Chem. A*, **111** (2007) 3446–3457.

[3] D.B. Ninković, G.V. Janjić, D.Ž. Veljković, D.N. Sredojević, S.D. Zarić, *ChemPhysChem*, **12** (2011) 3511–3514.

[4] D.P. Malenov, A.J. Aladić, S.D. Zarić (2019) на рецензији.

STACKING INTERACTIONS AT LARGE HORIZONTAL DISPLACEMENTS AND DIHYDROGEN BONDING OF BORAZINE

D. P. Malenov^{a,b}, A. J. Aladić^a, S. D. Zarić^{a,b}

^a University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; ^b Texas A&M University at Qatar, Department of Chemistry, P. O. Box 23874, Doha, Qatar

e-mail: malenov@chem.bg.ac.rs

The replacement of C-C units in organic molecules with isoelectronic B-N units can lead to unique properties of the obtained compounds [1]. Stacking interactions of borazine $(B_3N_3H_6)$ were therefore studied and compared with the stacking interactions of benzene [2, 3].

Scan of potential energy surface for borazine-borazine stacking was performed at B3LYP-D3/def2-TZVP level of theory, which is in very good agreement with the CCSD(T)/CBS level [4]. Since the scan was performed for horizontal displacements up to 7.5 Å, a large number of stable borazine dimers was found. Additionally, all the minima found by this scan were optimized at B3LYP-D3/def2-TZVP level of theory.

The strongest stacking interaction between borazine molecules has antiparallel sandwich orientation, with CCSD(T)/CBS interaction energy of -3.57 kcal/mol [4], which is stronger than stacking between benzene molecules (-2.73 kcal/mol) [2]. At large horizontal displacements (over 4.5 Å) stacking interactions between borazine molecules have the energies of about -2.0 kcal/mol, which is similar to the stacking at large horizontal displacements between benzene molecules [3]. Additionally, dihydrogen bonding was found in borazine dimers, the strongest having the energy of -2.37 kcal/mol. SAPT analysis showed that electrostatic energy component is the most important for the stability of these borazine dimers. All preferred geometries and relative interaction strengths can be explained by observing the electrostatic potentials of borazine [4].

In the crystal structures of borazine only stacking interactions at large horizontal displacements and hydrogen and dihydrogen bonding were found [4]. Although they are not the strongest, these interactions are present in the crystals since their geometries enable the formation of additional simultaneous interactions, which contribute to overall stability of supramolecular systems.

[1] M. Stojanović, M. Baranac-Stojanović, New J. Chem., 42 (2018) 12968-12976.

[2] E.C. Lee, D. Kim, P. Jurečka, P. Tarakeshwar, P. Hobza, K.S. Kim, *J. Phys. Chem.A*, **111** (2007) 3446–3457.

[3] D.B. Ninković, G.V. Janjić, D.Ž. Veljković, D.N. Sredojević, S.D. Zarić, *ChemPhysChem*, **12** (2011) 3511–3514.

[4] D.P. Malenov, A.J. Aladić, S.D. Zarić (2019) under review.

ДА ЛИ СУ УГЛОВИ МОЛЕКУЛА ВОДЕ У КРИСТАЛНИМ СТРУКТУРАМА ПОУЗДАНИ? УДРУЖЕНА АНАЛИЗА КЕМБРИЧКЕ КРИСТАЛОГРАФСКЕ БАЗЕ ПОДАТАКА И *АВ-INITIO* ПРОРАЧУНА.

<u>М. Р. Миловановић</u>^a, Ј. М. Живковић^a, Д. Б. Нинковић^a, И. М. Станковић^б, С. Д. Зарић^{в,г}

^а Иновациони центар Хемијског факултета, Студентски трг, 12-16, 11000 Београд, Србија; ⁶ Институт за Хемију, Технологију и Металургију, Универзитет у Београду, Његошева 12, 11000 Београд, Србија; ⁶ Хемијски факултет, Универзитет у Београду, Студентски трг, 12-16, 11000 Београд, Србија; ^г Департман за хемију, Тексас А&М Универзитет у Катару, Поштански фах 23874, Доха, Катар e-mail: milovanovicmilan11@gmail.com

Молекул воде је свеприсутан у природи. Због поларне структуре и способности водоничног везивања, молекули воде играју важну улогу у многим животним процесима, као и у паковању кристалних структура малих молекула. Током протеклих деценија, структура молекула воде интензивно је проучавана [1,2]. Утврђено је да слободни молекул воде у гасној фази има угао везе (H–O–H) од $104,52 \pm 0,05^{\circ}$ [3], док је угао везе код кристалних хидрата из више од 40 структура решених неутронском дифракционом анализом у распону од $102,50^{\circ}$ до $115,25^{\circ}$ [4]. Прорачуни потенцијалних површина спектроскопских енергија показали су да равнотежна структура молекула воде има угао везе од $104,501 \pm 0,005$ [5].

У овом истраживању, анализирали смо структуре, архивиране у Кембричкој кристалографској бази података, које садрже воду и извршлили *ab-initio* прорачуне за различите углове везе у молекулу воде.

Резултати анализе структура које су решене неутронском и рендгенском дифракционом анализом са R фактором $\leq 0,1$ показали су да постоји велика несагласност вредности углова везе од идеалне/их. Наиме, опсег угла везе у неутронски решеним структурама је 79,76–141,64°, док је у рендгенски решеним структурама 17,03–180,00°. Израчунавањем криве потенцијалне енергије са променом угла везе показано је да су углови везе изван опсега од око 93,0–116,0° прилично сумњиви. Сходно томе, то би довело у питање најмање 15% рендгенски решених структура које садрже упитне геометрије молекула воде.

[1] F. Martin, H. Zipse, J. Comput. Chem., 26 (2005) 97-105.

[2] K. Ichikawa, Y. Kameda, T. Yamaguchi, H. Wakita, M. Misawa, *Mol. Phys.*, 73 (1991) 79–86.

[3] W. S. Benedict, N. Gailar, E.K. Plyler, J. Chem. Phys., 24 (1956) 1139–1165.

[4] G. Ferraris, M. Franchini- Angela, Acta Crystallogr., B28 (1972) 3572-3583.

[5] O.L. Polyansky, A.G. Császár, S.V. Shirin, N.F. Zobov, P. Barletta, J. Tennyson, D.W. Schwenke, P.J. Knowles, *Science*, **299** (2003) 239–242.

ke, P.J. Knowles, *Science*, **299** (2005) 25

ARE THE BOND ANGLES OF WATER MOLECULES IN CRYSTAL STRUCTURES RELIABLE? JOINT CAMBRIDGE STRUCTURAL DATABASE AND *AB-INITIO* CALCULATION ANALYSIS.

<u>M. R. Milovanović</u>^a, J. M. Živković^a, D. B. Ninković^a, I. M. Stanković^b, S. D. Zarić^{c,d}

^a Innovation centerof the Faculty of Chemistry, Studentski trg 12-16, Belgrade, 11000, Serbia; ^b Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; ^c Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia; ^d Texas A&M University at Qatar, Education City, PO Box 23874, Doha, Qatar e-mail: milovanovicmilan11@gmail.com

Water molecule is omnipresent in nature. Due to polar structure and ability for hydrogen bonding water molecule plays important role in many life processes as well as in packing of small molecules crystal structures. Over the past decades, the structure of water molecule has been intensively studied [1,2]. It has been found that a free water molecule in gas phase has the bond angle (H–O–H) of $104.52 \pm 0.05^{\circ}$ [3], while the bond angle of crystalline hydrates from over 40 structures solved by neutron diffraction analysis is in range from 102.50° to 115.25° [4]. Spectroscopic potential energy surface based calculations showed that equilibrium structure of water molecule has the bond angle of $104.501^{\circ} \pm 0.005$ [5].

In this study, we performed an analysis of water containing structures archived in Cambridge Structural Database (CSD) as well as *ab-initio* calculations on a range of bond angles of water molecule.

Results of analysis of structures solved by neutron as well as by X-ray diffraction analysis with *R* factor ≤ 0.1 showed that there is a large discrepancy of the bond angle values from the ideal one(s). Namely, the range of the bond angle in neutron solved structures is 79.76–141.64° while in X-ray solved structures is 17.03–180.00°. By calculating the energy protentional curve of the bond angle change it is shown the bond angles beyond the range of ca. 93.0–116.0° are rather doubtful. Accordingly, it would lead to at least 15% of X-ray solved structures that contain questionable water molecule geometries.

[1] F. Martin, H. Zipse, J. Comput. Chem., 26 (2005) 97-105.

[2] K. Ichikawa, Y. Kameda, T. Yamaguchi, H. Wakita, M. Misawa, *Mol. Phys.*, **73** (1991) 79–86.

[3] W. S. Benedict, N. Gailar, E.K. Plyler, J. Chem. Phys., 24 (1956) 1139-1165.

[4] G. Ferraris, M. Franchini- Angela, Acta Crystallogr., B28 (1972) 3572-3583.

[5] O.L. Polyansky, A.G. Császár, S.V. Shirin, N.F. Zobov, P. Barletta, J. Tennyson, D.W. Schwenke, P.J. Knowles, *Science*, **299** (2003) 239–242.

35

KRISTALOGRAFSKI UVID U SUPSTITUCIJU SUMPORA SELENOM. KVANTNO-HEMIJSKI PRISTUP I PREPOZNAVANJE U BIOLOŠKIM SISTEMIMA

M. Petković Benazzouz^a, M. Sarvan^a, I. Đorđević^b, G. Janjić^b

^a Fizički fakultet, Univerziteta u Beogradu, Studentski trg 12-16, Beograd, Srbija; ^b Institut za Hemiju, Tehnologiju i Metalurgiju, Univerzitet u Beogradu, Njegoševa 12, Beograd, Srbija

e-mail: marijapetkovic@ff.bg.ac.rs

Selen i sumpor su dva vrlo bliska elementa, prisutna u većini biohemijskih reakcija. Selen je istovremeno i esecijalan mikronutritient i toksičan u većim količinama. Svoje biološke funkcije ispoljava u obliku selenoproteina. To su jedinjenja koja sadrže Se u obliku 21. amino-kiseline (selenocistein, Sec), analoga cisteinu gde su svi sumporovi atomi bočnog lanca zamenjeni selenom. Bolji uvid u prirodu ovih nekovalentnih interakcija pružila je grupa na čelu sa M. Senćanskim [1].

Iz Kembričke baze strukturnih podataka izdvojene su sve strukture koje sadrže Se i S, kod kojih je rastojanje (d parametar) između atoma Se i nekog drugog atoma A manje od 4,5 Å, a u slučaju S atoma $d \le 4,0$ Å (slika 1). Rezultati statističke analize su prikazani u tabeli 1.

Tip interakcije

CSD analiza		Selen (Se)	Sumpor (S)			
	geometrija 1	geometrija 2	geometrija 3	geometrija 1	geometrija 2	
Broj kontakta	7714	829	166	135 882	13 910	
A	H (7114)	Se (432)	C _{sn2} (148)	H (125288)	S (10066)	
Tip	C-H-Se	Se-Se	Se π	C-H S	S…S	
interakcije	(81.7%)	(5.0%)	(1.9%)	(80.5%)	(6.5%)	

Tabela 1. Rezultati statističke analize kristalnih struktura koje sadrže selen i sumpor

155 681

eometrija

5 990 C_{sp2} (5161)

(3.3%)

Model sistemi i geometrijski parametri korišćeni za pretragu Kembričke baze strukturnih podataka

Rezultati su ukazali na slične tendencije ova dva elementa u udelima pojedinih vrsta
imterakcija. Kristalografska analiza je pokazala da su najbrojnije strukture sa C-H/Se i
C-H/S interakcijama (oko 80%), iako su slabije od klasičnih vodoničnih veza ovih

8709

elemenata, paralelnih i tetrelnih Se/Se i S/S interakcija, kao i Se/ π i S/ π interakcija. Predviđanje biloških aktivnosti, primenom molekulskog dokinga, pokazalo je da zamena S sa Se vodi obično jačem vezivanju Se derivata za ciljani enzim, u poređenju sa S jedinjenjem, a da su se razlike u mestu vezivanja javile tek u slučaju kada je za Se (S) direktno vezana grupa sa donorskim sposobnostima za vodonično vezivanje.

Ukupan broj

kontakta

[1] M. Senćanski, I. Đorđević, S. Grubišić, J. Mol. Model., 23 (2017) 162-166.

CRYSTALLOGRAPHIC INSIGHT INTO THE SUBSTITUTION OF SULPHUR BY SELENIUM, QUANTUM-CHEMICAL CALCULATIONS AND BIOSYSTEM RECOGNITION

M. Petković Benazzouz^a, M. Sarvan^a, I. Đorđević^b, G. Janjić^b

^a Faculty of Physics, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia; ^b Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, Serbia

e-mail: marijapetkovic@ff.bg.ac.rs

Selenium and sulphur are two closely related elements. In nature they are both present in majority of biochemical reactions. Selenium is an essential micronutrient, but is it is also toxic in excess. Selenium expresses its biological functions through selenoproteins. They contain selenium in the form of the 21st amino acid, selenocysteine (Sec), which is an analog of cysteine with the sulfur-containing side chain replaced by a Se-containing side chain. Better insight in the nature of these noncovalent interactions was offered by M. Senćanski [1].

The crystallographic study is based on structures obtained from the Cambridge Structural Database (CSD) with Se and S interactions. The particular structure was considered "a hit" if the distance (*d* parameter) between the Se atom and A (any atom) is less than 4.5 Å (for Se interactions), or less than 4.0 Å for S interactions (Figure 1). The results of statistics analysis of Se and S interactions are presented in Table 1.

Table 1. The results of statistics analysis of selenium and sulphur interactions in crystal structures								
CSD	Selenium (Se)			Sulphur (S)				
analysis	geometry 1	geometry 2	geometry 3	geometry 1	geometry 2	geometry 3		
Number of contacts	7714	829	166	135 882	13 910	5 889		
A	H (7114)	Se (432)	C _{sp2} (148)	H(125288)	S (10066)	C _{sn2} (5161)		
Type of	C-H. Se	Se Se	Se π	C-H…S	S…S	S…π		
interactions	(81.7%)	(5.0%)	(1.9%)	(80.5%)	(6.5%)	(3.3%)		
Total number Of contacts		8709			155 681			
	Angle State CSD analysis Number of contacts A Type of interactions Total number Of contacts	Table 1. The resuling in the result in the	Selenium (Se) interaction CSD analysis Selenium (Se) geometry 1 geometry 2 Number of contacts 7714 829 A H (7114) Sc (432). Type of interactions (81.7%) 5.6%) Total number Of contacts 8709	Selenium (Se) sinteractions in crysta CSD analysis Selenium (Se) Number of contacts geometry 1 geometry 2 geometry 3 Number of contacts 7714 829 166 A H (7114) Se (432) C _{utt} (148) Type of C-H-Se Se-Se Se- π Total number Of connacts (81.7%) 8709 1.9%)	$\begin{array}{c c} \textbf{Table 1. The results of statistics analysis of select interactions in crystal structures \\ \hline \\ \hline \\ \textbf{Selenium (Se)} \\ \hline \\ \textbf{geometry 1} \\ \hline \\ \textbf{geometry 1} \\ \hline \\ \textbf{geometry 2} \\ \hline \\ \textbf{geometry 2} \\ \hline \\ \textbf{geometry 3} \\ \hline \\ \textbf{geometry 1} \\ \hline \\ \textbf{geometry 2} \\ \hline \\ \textbf{geometry 3} \\ \hline \\ \textbf{geometry 1} \\ \hline \\ \hline \\ \hline \\ \textbf{geometry 1} \\ \hline \\ \hline \\ \textbf{geometry 2} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \textbf{geometry 2} \\ \hline \\ $			

Based on statistical data analysis from all crystal structures, sulphur and selenium display similar tendency towards specified interactions. An obtained crystallographic analysis reveals that the most numerous are structures with C–H/Se and C–H/S interactions (~80%). Both C–H/Se and C–H/S interactions are weaker than classical hydrogen bonds, parallel and electrostatic tetrel Se/Se i S/S interactions, and Se/ π and S/ π interactions. Prediction of biological activities, using a molecular docking, showed that replacing of S with Se atom mainly leads to stronger binding of Se derivatives on the target enzyme, in comparison with the S compound. The binding at differente sites occurrs only when Se and S atom is directly conjugated with a group with donor capabilities for hydrogen bonding.

[1] M. Senćanski, I. Đorđević, S. Grubišić, J. Mol. Model., 23 (2017) 162-166.

ULOGA NEKOVALENTNIH INTERAKCIJA FLUORA U PAKOVANJU MOTIVA: ANALIZA KRISTALOGRAFSKIH PODATAKA I KVANTNO-HEMIJSKI PRORAČUNI

<u>I. Đorđević</u> ^a, G. Janjić ^a, A. Lazić ^b, K. Gak ^b, N. Valentić ^c, N. Trišović ^c, L. Radovanović ^b, J. Rogan ^c

^a Institut za hemiju, tehnologiju i metalurgiju, Univerzitet u Beogradu, Njegoševa 12, Beograd, Srbija; ^b Inovacioni centar Tehnološko-metalurškog fakulteta, Univerzitet u Beogradu, Karnegijeva 4, Beograd, Srbija; ^c Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Karnegijeva 4, Beograd, Srbija e-mail: ivana.djordjevic@chem.bg.ac.rs

Nekovalentne interakcije imaju značajnu ulogu u formiranju supramolekulskog kristalnog pakovanja molekula. Interakcije koje uključuju atome halogena obezbeđuju slabo, ali visoko usmerenu kontrolu pakovanja molekula u čvrstom stanju. Uvođenje F-atoma može dovesti do značajnih promena u 2D ili 3D strukturama [1], povećanja stabilnosti biomolekula [2] ili poboljšanja dizajna lekova [3]. Da bi se ispitao efekat supstitucije H-atoma F-atomom, sintetisana su i strukturno okarakterisana dva derivata hidantoina: $C_{15}H_{16}N_2O_3$ (1) i $C_{15}H_{15}N_2O_3F$ (2) (slika).

Analiza kristalnih pakovanja 1 i 2 pokazala je da su NH^{...}O i CH^{...}O vodonične veze najbrojnije. U strukturi 2 se zbog fluorovanja povećava broj interakcija cikloheksilnog (Ch) i fenil-grupe (Ph) prstena (CH^{...} π interakcije), kao i između dva Ph prstena (π - π interakcije). Kvantno-hemijski proračuni na model sistemima koji predstavljaju dimere derivata hidantoina i izolovanih cikličnih jedinjenja, pokazali su da fluorovanje utiče na stvaranje jačih CH^{...} π i π - π interakcija. Atom F u 2 učestvuje u formiranju tri CH^{...}F i jedne F^{...}F interakcije, što je u saglasnosti sa rezultatima Kembridžke baze podataka, koji su pokazali da su najbrojnije CH^{...}F i F^{...}F interakcije, a njihova jačina dostiže vrednost 2 kcal·mol⁻¹.

Kristalogafski podaci: **1**, *P*–1, *a* = 6,3079(13), *b* = 10,573(2), *c* = 11,415(2) Å, α = 67,21(3), β = 78,84(3), γ = 76,16(3)°, *R*₁ = 6,06%; **2**, *P*–1, *a* = 5,9981(12), *b* = 11,148(2), *c* = 12,073(2) Å, α = 108,98(3), β = 101,57(3), γ = 105,27(3)°, *R*₁ = 4,82%.

[1] T. Friščić, D.G. Reid, G.M. Day, M.J. Duer, W. Jones, *Cryst. Growth Des.*, **11** (2011) 972–981.

- [2] A.R. Voth, P. Khuu, K. Oishi, P.S. Ho, Nat Chem., 1 (2009) 74-79.
- [3] S. G. DiMagno, H. Sun, Curr. Top. Med. Chem., 6 (2006) 1473-1482.

THE ROLE OF NON-COVALENT FLUORINE INTERACTIONS IN PACKING MOTIFS: CRYSTALLOGRAPHIC DATA ANALYSIS AND QUANTUM CHEMICAL CALCULATIONS

<u>I. Đorđević</u> ^a, G. Janjić ^a, A. Lazić ^b, K. Gak ^b, N. Valentić ^c, N. Trišović ^c, L. Radovanović ^b, J. Rogan ^c

^a Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, Serbia; ^b Innovation Centre of the Faculty of Tecnology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia; ^c Faculty of Tecnology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia e-mail: ivana.djordjevic@chem.bg.ac.rs

Non-covalent interactions have a significant role in supramolecular crystal packings of the molecules. Halogen interactions provide weak but highly directed control of the packing of molecules in the solid state. Introduction of F atom can leads to significant differences in 2D or 3D structures [1], higher structural stability of biomolecules [2] or improve drug design [3]. In order to examine the substitution effect of H atom with F atom, two hydantoin derivatives were synthesized and structurally characterized: $C_{15}H_{16}N_2O_3$ (1) i $C_{15}H_{15}N_2O_3F$ (2) (Figure).

Crystallographic analysis of 1 and 2 showed that NH^{...}O and CH^{...}O hydrogen bonds are the most numerous in their crystal packings. Due to fluoridation in 2, the number of interactions among cyclohexyl (Ch) and phenyl ring (Ph) rings (CH^{...} π interactions), as well as among two Ph rings (π - π interactions) is increased. Quantum-chemical calculations on the model systems presented by dimmers of hydantoin derivatives and isolated cyclic compounds, verified that fluoridation caused the formation of stronger CH^{...} π and π - π interactions. The F atom in 2 is involved in three CH^{...}F and one F^{...}F interactions, which is in agreement with the results from the Cambridge Structural Database, which have shown that CH^{...}F and F^{...}F interactions are the most numerous, and their strength reaches the value of 2 kcal·mol⁻¹.

Crystallographic data: **1**, *P*–1, a = 6.3079(13), b = 10.573(2), c = 11.415(2) Å, a = 67.21(3), $\beta = 78.84(3)$, $\gamma = 76.16(3)^{\circ}$, $R_1 = 6.06\%$; **2**, *P*–1, a = 5.9981(12),

b = 11.148(2), c = 12.073(2) Å, $\alpha = 108.98(3), \beta = 101.57(3), \gamma = 105.27(3)^{\circ}, R_1 = 4.82\%$. [1] T. Friščić, D.G. Reid, G.M. Day, M.J. Duer, W. Jones, *Cryst. Growth Des.*, **11** (2011) 972–981.

[2] A.R. Voth, P. Khuu, K. Oishi, P.S. Ho, Nat Chem., 1 (2009) 74–79.

[3] S.G. DiMagno, H. Sun, Curr. Top. Med. Chem., 6 (2006) 1473-1482.

POSTERSKA SAOPŠTENJA POSTER PRESENTATIONS

KRISTALNA STRUKTURA S-ETIL DERIVATA TIOSALICILNE KISELINE

<u>M. Mijajlović</u>^a, M. Nikolić^a, A. Bukonjić^a, D. Tomović^a, A. Stanković^a, V. Jevtić^b, Z. Ratković^b, S. Trifunović^b, I. Potočňák^c, E. Samoľová^c, G. Radić^a

^a Univerzitet u Kragujevcu, Srbija, Fakultet medicinskih nauka, Odsek za farmaciju, Svetozara Markovića 69, 34000 Kragujevac; ^b Institut za hemiju, Prirodno-matematički fakultet, Radoja Domanovića 12, 34000 Kragujevac, Republika Srbija; ^c Institute of Chemistry, Faculty of Science, P.J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia

e-mail: marina kg87@yahoo.com

S-etil derivat tiosalicilne kiseline dobijen je reakcijom alkilovanja tiosalicilne kiseline etil-bromidom u baznoj sredini i smeši voda-etanol kao rastvaraču. Tako dobijena reakciona smeša je ostavljena tokom noći na 60 °C i zagrevana na vodenom kupatilu kako bi ispario etanol. U dobijeni vodeni rastvor dodata je razblažena hlorovodonična kiselina usled čega je došlo do taloženja liganda. Beli talog S-etil derivata tiosalicilne kiseline je filtriran, ispiran vodom i sušen na vakuumu. Kristali pogodni za rendgensku strukturnu analizu dobijeni su sporom prekristalizacijom iz sistema etanol-voda.

Kristalografski podaci: empirijska formula C₉H₁₀O₂S, $M_r = 182,23$, triklinični kristalni sistem, P-1, a = 5,09130(10), b = 8,2223(3), c = 10,5588(3) Å, $\alpha = 79,430(2)$, $\beta = 81,469(2)$, $\gamma = 80,571(2)^{\circ}$, V = 425,44(2) Å³, Z = 2, $\rho = 1,423$ g cm⁻³, $\mu = 3,006$ mm⁻¹, $R_1[I > 2\sigma(I)] = 0,0270$, $wR_2 = 0,0728$.

Struktura (slika 1) je rešena korišćenjem programa SHELXT [1], a potom utačnjavana pomoću programa SHELXL [2], implementiranog u okviru WinGX programskog paketa [3]. Analiza dužina veza i uglova izvšena je korišćenjem SHELXL i PLATON [4]; DIAMOND je korišćen za molekularnu grafiku.

Slika 1. Kristalna struktura S-etil derivata tiosalicilne kiseline

- [1] G.M. Sheldrick, Acta Crystallogr., A71 (2015) 3-8.
- [2] G.M. Sheldrick, Acta Crystallogr., C71 (2015) 3-8.
- [3] L.J. Farrugia, J. Appl. Crystallogr., 32 (1999) 837–838.
- [4] A.L. Spek, Acta Crystallogr., D65 (2009) 148-155.

CRYSTAL STRUCTURE OF S-ETHYL DERIVATIVE OF THIOSALICYLIC ACID

<u>M. Mijajlović</u>^a, M. Nikolić^a, A. Bukonjić^a, D. Tomović^a, A. Stanković^a, V. Jevtić^b, Z. Ratković^b, S. Trifunović^b, I. Potočňák^c, E. Samoľová^c, G. Radić^a

^a University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34000 Kragujevac; ^b Department of Chemistry, Faculty of Science, Radoja Domanovica 12, 34000 Kragujevac, Republic of Serbia; ^c Institute of Chemistry, Faculty of Science, P.J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia

e-mail: marina_kg87@yahoo.com

S-ethyl derivative of thiosalicylic acid was prepared by alkylation of thiosalicylic acid by ethyl-bromide in alkaline water-ethanol solution. The resulting mixture was kept overnight at 60 °C and ethanol was evaporated off on a water bath. Diluted hydrochloric acid was added to the resulting water solution and ligand was precipitated. S-ethyl thiosalicylic acid as a white precipitate was filtered, washed with water and dried under vacuum. Single crystals suitable for X-ray analysis were obtained by slow recrystallization from ethanol-water system.

Crystallographic data: empirical formula C₉H₁₀O₂S, M_r = 182.23, triclinic crystal system, *P*-1, *a* = 5.09130(10), *b* = 8.2223(3), *c* = 10.5588(3) Å, α = 79.430(2), β = 81.469(2), γ = 80.571(2)°, *V* = 425.44(2) Å³, *Z* = 2, ρ = 1.423 g cm⁻³, μ = 3.006 mm⁻¹, $R_1[I > 2\sigma(I)] = 0.0270$, $wR_2 = 0.0728$.

The structure (Figure 1) was solved by SHELXT [1] and refined using SHELXL [2], implemented in WinGX program suit [3]. The analysis of bond distances and angles was performed using SHELXL and PLATON [4]; DIAMOND was used for molecular graphics.

Figure 1. Crystal structure of S-ethyl derivative of thiosalicylic acid

- [1] G.M. Sheldrick, Acta Crystallogr., A71 (2015) 3-8.
- [2] G.M. Sheldrick, Acta Crystallogr., C71 (2015) 3-8.
- [3] L.J. Farrugia, J. Appl. Crystallogr., 32 (1999) 837–838.
- [4] A.L. Spek, Acta Crystallogr., D65 (2009) 148-155.

SINTEZA I KRISTALNA STRUKTURA NOVOG OKTOPAMINSKOG DERIVATA KUMARINA

<u>S. S. Jovičić Milić</u> ^a, E. H. Avdović ^a, V. V. Jevtić ^a, Đ. S. Petrović ^a, D. Dimić ^b, J. M. Dimitrić Marković ^b, I. Potočňák ^c, S. R. Trifunović ^a

^a Institut za hemiju, Prirodno-matematički fakultet, Univerzitet u Kragujevcu, Radoja Domanovića 12, 34000 Kragujevac, Srbija; ^b Univerzitet u Beogradu, Fakultet za fizičku hemiju, Studentski trg 12-16, 11000 Beograd, Srbija; ^c P. J. Šafárik University in Košice, Institute of Chemistry, Moyzesova 11, SK-04154 Košice, Slovak Republic e-mail: jovicic_sandra@yahoo.com

Novosintetisani derivat oktopamina dobijen je mešanjem i refluktovanjem ekvimolarnih količina 3-acetil-4-hidroksi kumarina i oktopamina u metanolu. Tok reakcije je praćen pomoću TLC (toluen : aceton = 7 : 3). Nakon završene reakcije rastvor je hlađen do sobne temperature. Dobijeni beli kristali su proceđeni i sušeni na vazduhu. Prekristalizacija je vršena iz etanola. Pretpostavljena struktura dobijenog jedinjenja potvrđena je na osnovu rezultata rendgenske strukturne analize.

Kristalografski podaci: triklinični kristalni sistem, prostorna grupa $P\overline{\Gamma}$, veličina kristala 0,234 × 0,066 × 0,044 mm³, parametri jedinične ćelije a = 7,0726(2), b = 9,8752(2), c = 12,7283(3) Å, a = 99,978(2), $\beta = 99,380(2)$, $\gamma = 110,120(2)^{\circ}$, V = 797,94(4)Å³, Z = 2, $\rho_x = 1,412$ mg/m³, $\mu = 0,855$ mm⁻¹, $R_1 = 0,0563$, $wR_2 = 0,1311$.

Slika 1. Molekulska struktura novog oktopaminskog derivata kumarina

SYNTHESIS AND CRYSTAL STRUCTURE OF NEW OCTOPAMINE DERIVATIVE OF COUMARIN

<u>S. S. Jovičić Milić</u>^a, E. H. Avdović^a, V. V. Jevtić^a, Đ. S. Petrović^a, D. Dimić^b, J. M. Dimitrić Marković^b, I. Potočňák^c, S. R. Trifunović^a

^a Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; ^b University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; ^c Department of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, SK-04154 Košice, Slovak Republic e-mail: jovicic sandra@yahoo.com

The newly synthesized octopamine derivative was obtained by mixing and refluxing the equimolar amounts of 3-acetyl-4-hydroxy coumarin and octopamine in methanol. Progress of reaction was monitored by TLC (toluene : acetone = 7 : 3). At the end of the reaction, solution was cooled at the room temperature. The obtained white crystals were filtered, air dried and recrystallized from ethanol. Proposed structure of the obtained compound was confirmed by X-ray structural analysis.

Crystal data: triclinic crystal system, space group $P\overline{1}$, crystal size $0.234 \times 0.066 \times 0.044 \text{ mm}^3$, unit cell parameters a = 7.0726(2), b = 9.8752(2), c = 12.7283(3) Å, a = 99.978(2), $\beta = 99.380(2)$, $\gamma = 110.120(2)^\circ$, V = 797.94(4) Å³, Z = 2, $\rho_x = 1.412 \text{ mg/m}^3$, $\mu = 0.855 \text{ mm}^{-1}$, $R_1 = 0.0563$, $wR_2 = 0.1311$.

Figure 1. Molecular structure of new octopamine derivative of coumarin

УТИЦАЈ АНЈОНА НА КООРДИНАЦИОНО ОКРУЖЕЊЕ ХЛОРО КОМПЛЕКСА Сu(II) СА ХИДРАЗОНОМ 2-АЦЕТИЛПИРИДИНА И ЖИРАРОВОГ Т РЕАГЕНСА

<u>Б. Чобељић</u>^а, А. Певец⁶, М. Миленковић^а, И. Турел⁶, К. Анђелковић^а

^а Хемијски факултет, Универзитет у Београду, Студентски трг 12–16, 11000 Београд, Србија; ^б Факултет за хемију и хемијску технологију, Универзитет у Јубљани, Вечна пот 113, 1000 Љубљана, Словенија e-mail: bozidar@chem.bg.ac.rs

У реакцији Жираровог Т реагенса и 2-ацетилпиридина (молски однос 1:1) у метнолу синтетисан је лиганд HLCl. У реакцији Cu(BF₄)₂·6H₂O и лиганда HLCl у метнолу добијен је комплекс опште формуле [CuLCl]BF₄ (1). Када је као извор Cu(II) јона коришћен Cu(NO₃)₂·3H₂O, под истим условима, добијен је комплекс опште формуле [CuLCl(NO₃)] (2). Структуре монокристала комплекса 1 и 2 су одређене рендгенском структурном анализом.

Комплекс 1 (слика 1) кристалише у монокличној центросиметричној просторној групи $P_{2_1/c}$, са асиметричном јединицом која садржи комплексни катјон [CuLCl]⁺ и неуређени BF₄⁻ анјон. У комплексном катјону за Cu(II) јон координован је тридентатни цвитер-јонски лиганд L преко NNO донорског сета атома и Cl⁻ јона који заузима четврто координационо место. Геометрија око Cu(II) јона је деформисана квадратно-планарна са параметром τ_4 0,17. Кристалографски подаци за 1: a = 9,9440(4) Å, b = 9,3620(4) Å, c = 18,5299(7) Å, $\beta = 95,626(3)^\circ$, V = 1716,75(12) Å³, Z = 4, измерено 3931 независних рефлексија, утачњавано 249 параметара, $R_1 = 0,0334$, $wR_2 = 0,0858$, S = 1,050.

Комплекс 2 (слика 2) кристалише у монокличној центросиметричној просторној групи $P2_1/c$, са асиметричном јединицом која садржи неутрални комплекс [CuLCl(NO₃)]. Комплекс 2 формира се координацијом Cu(II) јона преко NNO донорског сета атома тридентатног цвитер-јонског лиганда L, хлоро лиганда и NO₃⁻ јона координованог преко атома кисеоника. Координациони полиедар се формира око Cu(II) јона као аксијално издужена квадратна-пирамида са индексом тригоналности (τ_5) 0,23. Кристалографски подаци за 2: a = 10,1820(6) Å, b = 8,6362(6) Å, c = 18,7170(11) Å, $\beta = 95,178(5)^\circ$, V = 1639,14(19) Å³, Z = 4, измерено 3657 независних рефлексија, утачњавано 212 параметара, $R_1 = 0,0346$, $wR_2 = 0,0872$, S = 1,034.

Слика 1. ORTEP приказ 1.

Слика 2. ORTEP приказ 2.

THE INFLUENCE OF ANION ON COORDINATION GEOMETRY OF CHLORO Cu(II) COMPLEXES WITH 2-ACETYLPYRIDINE GIRARD'S T HYDRAZONE

B. Čobeljić^a, A. Pevec^b, M. R. Milenković^a, I. Turel^b, K. Anđelković^a

^{*a*} Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; ^{*b*} Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia e-mail: bozidar@chem.bg.ac.rs

The ligand **HL**Cl was synthesized by the reaction of Girard's T reagent and 2acetylpyridine in methanol (molar ratio 1:1). In the reaction of $Cu(BF_4)_2 \cdot 6H_2O$ and ligand **HL**Cl in methanol the Cu(II) complex with composition [CuLCl]BF₄ (1) was obtained. If Cu(NO₃)₂·3H₂O was used as a source of Cu(II) ions, under the same conditions, Cu(II) complex with composition [CuLCl(NO₃)] (2) was formed. The molecular structures of complexes 1 and 2 were determined by single-crystal X-ray diffraction methods.

Complex 1 (Figure 1) crystallizes in the monoclinic centrosymmetric space group $P2_1/c$, with the asymmetric unit comprising one complex cation [CuLCl]⁺ and statistically disordered BF₄⁻ anion. The complex cation features a four-coordinate Cu(II) center with the NNO donor set of tridentate zwitter-ionic ligand L and the Cl⁻ ion supplementing the fourth coordination site. The coordination geometry around Cu(II) may be described as a distorted square planar with τ_4 parameter of 0.17. Crystallographic data for 1: a = 9.9440(4) Å, b = 9.3620(4) Å, c = 18.5299(7) Å, $\beta = 95.626(3)^\circ$, V = 1716.75(12) Å³, Z = 4, 3931 independent reflections measured, 249 parameters refined, $R_1 = 0.0334$, $wR_2 = 0.0858$, S = 1.050.

Complex 2 (Figure 2) also crystallizes in the monoclinic space group $P2_1/c$, however, the asymmetric unit of 2 comprises the neutral complex molecule [CuLCl(NO₃)]. The complex 2 features a five-coordinate Cu(II) center with the NNO donor set of tridentate zwitter-ionic ligand L, and the Cl⁻ and O-bonded NO₃⁻ ions occupying the remaining two coordination sites. The coordination polyhedron around Cu(II) may be described as an axially elongated square pyramid with an index of trigonality (τ_5) of 0.23. Crystallographic data for 2: a = 10.1820(6) Å, b = 8.6362(6) Å, c = 18.7170(11) Å, $\beta = 95.178(5)^{\circ}$, V = 1639.14(19) Å³, Z = 4, 3657 independent reflections measured, 212 parameters refined, $R_1 = 0.0346$, $wR_2 = 0.0872$, S = 1.034.

Figure 1. ORTEP presentation of the 1.

Figure 2. ORTEP presentation of the 2.

KRISTALNA STRUKTURA, SPEKTRALNA I TERMALNA SVOJSTVA Cu(II)-KOMPLEKSA AZO PIRIDONSKE BOJE

J. Lađarević^a, L. Radovanović^b, B. Božić^c, A. Mašulović^a, J. Rogan^a, D. Mijin^a

^a Tehnološko-metalurški fakultet. Univerzitet u Beogradu. Karnegijeva 4. Beograd. Srbija; ^b Inovacioni centar Tehnološko-metalurškog fakulteta, Univerzitet u Beogradu, Karnegijeva 4, Beograd, Srbija; ^c Institut za Fiziologiju i Biohemiju, Biološki fakultet, Univerzitet u Beogradu, Studentski trg 16, Beograd, Srbija e-mail: jmirkovic@tmf.bg.ac.rs

Heterociklične azo boje koje u svojoj strukturi imaju piridonsko jezgro pokazale su se kao efikasni helatni ligandi pri formiranju bakar(II)-kompleksa [1]. Kompleksi azo piridonskih boja primenjuju se u optičkim slojevima za snimanje i karakterišu se dobrom stabilnošću na uticaj svetlosti i povišene temperature [2]. Azo-hidrazon tautomerija predstavlja značajan fenomen pri kompleksiranju ovih boja sa jonima prelaznih metala, zbog transformacije hidrazonskog mosta u bojama u azo-vezu u kompleksu.

Slika 1. Asimetrična jedinica Cu(II)-kompleksa. Nekoordinirani molekul DMF i H-atomi nisu prikazani.

Reakcijom 5-(4-hlorfenilazo)-1-etil-3cijano-6-hidroksi-4-metil-2-piridona (HL) i Cu(CH₃COO)₂·H₂O rastvorenog u N,N-dimetilformamidu (DMF) na sobnoj temperaturi, sintetisan je kompleks $[CuL_2(DMF)] \cdot DMF.$ Kompleks je okarakterisan UV-Vis i ATR-FTIR spektroskopijom, simultanom TG/DSC- i rendgenskom strukturnom analizom.

Asimetričnu jedinicu kompleksa čine Cu(II)-atom, dva helatna L-liganda, jedan koordiniran i jedan nekoordiniran molekul DMF (slika 1). Kvadratnopiramidalno okruženje Cu(II)-atoma čine dva O-atoma i dva N-atoma iz dva molekula L-liganda i O-atom iz koordiniranog molekula DMF. Stabilizacija kristalne strukture postignuta je slabim

nekovalentnim interakcijama: C-H···O/N, π - π , C-H··· π , slobodan elektronski par- π i Cl···Cl.

Kristalografski podaci: $C_{36}H_{38}N_{10}O_6Cl_2Cu$, $M_r = 841,20$, trikliničan sistem, prostorna grupa $P\overline{1}$, a = 10,109(5), b = 11,753(6), c = 17,447(8) Å, $\alpha = 74,152(4)$, $\beta = 85,600(4)$, $\gamma = 77,357(4)^{\circ}, V = 1945,41(17)^{\circ}, R_1 = 0,059$ za 5929 refleksija sa $I \ge 2\sigma(I)$.

[1] X. Zhao, H. Oian, W. Huang, Dves Pigments, 149 (2018) 796-803. [2] X. Chen, Y. Wang, T. Tao, J. Geng, W. Huang, H. Qian, Dalton Trans., 42 (2013) 7679-7692.

CRYSTAL STRUCTURE, SPECTRAL AND THERMAL PROPERTIES OF Cu(II) COMPLEX OF AZO PYRIDONE DYE

J. Lađarević^a, L. Radovanović^b, B. Božić^c, A. Mašulović^a, J. Rogan^a, D. Mijin^a

^a Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia; ^bInnovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia; ^cInstitute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 16, Blegrade, Serbia e-mail: jmirkovic@tmf.bg.ac.rs

Heterocyclic azo dyes bearing pyridone ring as a coupling constituent are recognized as efficient chelating agents for copper(II) [1]. Complexes of azo pyridone dyes find application in optical recording layers with improved light stability and are characterized by good thermal and light stability [2]. Azo-hydrazone tautomerism of these dyes is evidenced as the significant phenomenon in their coordination since hydrazone bridge in dyes transforms to azo bond upon complexation.

Figure 1. Asymmetric unit of Cu(II) complex. Noncoordinated molecule of DMF and H atoms are not presented.

In the reaction of 5-(4-chlorophenylazo)-1-ethyl-3-cyano-6-hydroxy-4-methyl-2-pyridone (HL) with $Cu(CH_3COO)_2 \cdot H_2O$ N,Nin dimethylformamide (DMF) at room temperature, complex а [CuL₂(DMF)]·DMF has been prepared. The complex is characterized by UV-Vis and ATR-FTIR spectroscopy, simultaneous TG/DSC and single-crystal X-ray analysis.

The asymmetric unit of the complex is comprised of one Cu(II) atom, two chelate L ligands, one coordinated and one noncoordinated DMF molecule (Figure 1). Cu(II) atom is surrounded by

two O and two N atoms from two L ligands and by one O atom from coordinated DMF, forming a square pyramidal environment. The stabilization of the crystal packing is achieved by weak non-covalent interactions: C–H···O/N, π – π , C–H··· π , lone pair– π and Cl···Cl.

Crystal data: $C_{36}H_{38}N_{10}O_6Cl_2Cu$, $M_r = 841.20$, triclinic, space group P **1**, a = 10.109(5), b = 11.753(6), c = 17.447(8) Å, a = 74.152(4), $\beta = 85.600(4)$, $\gamma = 77.357(4)$ °, V = 1945.41(17) Å³, $R_1 = 0.059$ for 5929 observed reflections with $I \ge 2\sigma(I)$.

[1] X. Zhao, H. Qian, W. Huang, Dyes Pigments, 149 (2018) 796-803.

[2] X. Chen, Y. Wang, T. Tao, J. Geng, W. Huang, H. Qian, *Dalton Trans.*, **42** (2013) 7679–7692.

METALO-BIOMOLEKULSKI POLIMERI S AMINOKISELINAMA: EKSPERIMENTALNA I KOMPUTACIJSKA STUDIJA POLIMERNIH L-PIROGLUTAMATO Cu(II) KOMPLEKSA

Z. Popović^a, V. Pilepić^b, D. Matković-Čalogović^a

^a Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet, Kemijski odsjek, Horvatovac 102a, HR-10 000 Zagreb, Republika Hrvatska; ^b Sveučilište u Zagrebu, Farmaceutskobiokemijski fakultet, Fizičko-kemijski Odsjek, A. Kovačića 1, HR-Zagreb 10 000, Republika Hrvatska

e-mail: zpopovic@chem.pmf.hr

Proteini koji sadrže bakrove ione imaju vrlo važnu ulogu u biologiji, uključujući aktivaciju ili prijenos kisika, prijenos elektrona, redukciju dušikovih oksida, a važni su i u hidrolitičkoj kemiji. Kemija koordinacijskih polimera od interesa je u modernim materijalima zbog njihove potencijalne primjene u području fizi- i kemisorpcije, katalizi kao i optici. U ovom istraživanju je za koordinaciju bakrovog(II) iona uzeta L-piroglutaminska kiselina (poznata i kao 5-okso-L-prolin). Radi se o derivatu prirodne aminokiseline kod koje je slobodna amino skupina glutaminske kiseline ciklizirana u laktam. Dobiva se zagrijavanjem glutaminske kiseline pri 180 °C a u živim organizmima nastaje iz glutationa djelovanjem γ -glutamil ciklotransferaze.

Mi smo pripravili dva kompleksa, $\{[Cu_2(\mu-L-PGA)_4] \cdot 2H_2O\}_n$ (L-PGA = Lpiroglutamat ili deprotonirana L-piroglutaminska kiselina) (1), 2D-koordinacijski polimer i $[Cu(L-PGA)_2(H_2O)_2]_n$ (2) koji je 1D-koordinacijski polimer. Zanimljivo je da smo ove spojeve dobili bilo korištenjem racemične smjese bilo L-piroglutaminske kiseline kao reaktanta. 1 je nastao reakcijom Cu(OH)₂ s D,L- ili L-piroglutaminskom kiselinom, dok je za 2 polazna sol bila CuSO₄·5H₂O.

U 1 su dva bakrova(II) atoma koordinirana s četiri L-PGA liganda i tvore lopaticama sličnu jedinku "paddle-wheel unit". Dvije takve jedinke su premoštene L-PGA ligandom tvoreći 2D mrežu. Kristalna struktura 2 sastoji se od 1D polimera u kojem je svaki bakrov(II) atom koordiniran s tri L-PGA liganda i dvije molekule vode. Dva L-PGA liganda su koordinirana preko karboksilatnih kisikovih atoma dok je jedan vezan preko keto skupine premosnog L-PGA tvoreći tako lance paralelne s osi *a*. Susjedni lanci su međusobno povezani vodikovim vezama u dvostruke slojeve paralelne s (001) pri tome iskoristivši sve jake donorne i akceptorske atome (N–H···O and O–H···O). Hidrofobni dijelovi L-PGA usmjereni su izvan sloja participirajući samo u slabim van der Waalsovim kontaktima sa susjednim paralelnim slojevima. Međumolekulske interakcije su dodatno analizirane DFT proračunima koristeći analizu nekovalentnih interakcija (NCI). Komputacijska analiza je potvrdila jake ionske, te slabe do srednje jake vodikove veze i nekovalentne interakcije. Energije spomenutih interakcija nalaze se u intervalu 13,7-24,1 kJ mol⁻¹ i 5,1-10,8 kJ mol⁻¹ u 1 i 13,9-25,2 kJ mol⁻¹ i 4,4-9,8 kJ mol⁻¹ u 2.

AMINO ACID BASED METAL-BIOMOLECULE POLYMERS: COMBINED EXPERIMENTAL AND COMPUTATIONAL STUDY OF POLYMERIC L-PYROGLUTAMATO Cu(II) COMPLEXES

Z. Popović^a, V. Pilepić^b, D. Matković-Čalogović^a

^a University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia; ^b University of Zagreb, Faculty of Pharmacy and Biochemistry Department of Physical Chemistry, A. Kovačića 1, Zagreb 10000, Croatia e-mail: zpopovic@chem.pmf.hr

Proteins containing copper centers play important roles in biology, including dioxygen transport or activation, electron transfer, reduction of nitrogen oxides, and also in hydrolytic chemistry. The chemistry of coordination polymers has also attracted much attention as potential functional materials in the field of physi- and chemisorption, catalysis as well as in optics. L-Pyroglutamic acid (also known as 5-oxo-L-proline) was used for coordinating copper in this research. It is a natural amino acid derivative in which the free amino group of glutamic acid cyclized to form a lactam. It can be formed by heating glutamic acid at 180 °C and in living oganisms it is derived from glutathione through the action of γ -glutamyl cyclotransferase.

We have prepared two complexes, $\{[Cu_2(\mu-L-PGA)_4] \cdot 2H_2O\}_n$ (L-PGA = Lpyroglutamate or deprotonated L-pyroglutamic acid) (1), a 2D-coordination polymer, and $[Cu(L-PGA)_2(H_2O)_2]_n$ (2), a 1D-coordination polymer. Interestingly, we obtained these compounds by using either racemic pyroglutamic acid or L-pyroglutamic acid as the reactant. 1 was obtained from the reaction of Cu(OH)₂ with D,L- or L-pyroglutamic acid, while for 2 the starting copper salt was CuSO₄·5H₂O.

In 1 two copper(II) atoms and four L-PGA ligands form a paddle-wheel unit. The two paddle-wheel units are linked by the L-PGA ligand in the head-to-tail fashion into a 2D network. The crystal structure 2 is a 1D polymer with each copper(II) atom coordinated by three L-PGA ligands and two water molecules. Two L-PGA ligands are bonded through the carboxylate oxygen atoms while one is bonded through the keto group of the bridging L-PGA thus forming chains parallel to the *a*-axis. Neighboring chains are interlinked by hydrogen bonds into double sheets parallel to (001), utilizing all strong donors and acceptors of the N–H…O and O–H…O type. Hydrophobic parts of L-PGA point outward of the sheets forming only van der Waals contacts with the parallel sheets.

The intermolecular interactions were further analysed in detail with periodic DFT calculations by using non-covalent interaction (NCI) plot analysis. The computational analysis revealed strong ionic, weak-to-medium strength hydrogen bonds and noncovalent interactions. The energy for these interactions were estimated in the range of 13.7-24.1 kJ mol⁻¹ and 5.1-10.8 kJ mol⁻¹ in **1** and 13.9-25.2 kJ mol⁻¹ and 4.4-9.8 kJ mol⁻¹ in **2**.

SINTEZA I KARAKTERIZACIJA KOMPLEKSA Cd(II) SA (1,3-TIAZOL-2-IL)HIDRAZONIMA

S. B. Marković^a, A. Višnjevac^b, N. R. Filipović^c, T. R. Todorović^a

^a Univerzitet u Beogradu – Hemijski fakultet, Studentski trg 12-16, Beograd, Srbija;
 ^b Zavod za fizičku kemiju, Institut Ruđer Bošković, Bijenička cesta 54, Zagreb, Hrvatska;
 ^c Univerzitet u Beogradu – Poljoprivredni fakultet, Nemanjina 6, Beograd, Srbija
 e-mail:markovics@chem.bg.ac.rs

Novi kompleksi kadmijuma(II), $[Cd(HL1)_2](ClO_4)_2$ (1) (slika 1) i $[Cd(HL2)_2](ClO_4)_2 \cdot 2H_2O$ (2) (slika 2), sa (1,3-tiazol-2-il)hidrazonima su sintetisani i okarakterisani difrakcijom rendgenskih zraka na monokristalima.

Slika 1. Molekulska struktura kompleksa 1. Atomi vodonika i perhloratni joni su izostavljeni zbog preglednosti.

Figure 1. Molecular structure of the complex 1. For clarity, perchlorate anions and hydrogen atoms have been omitted.

Koordinacioni broj Cd(II) je šest u oba slučaja i ligandi su koordinovani u neutralnom obliku preko iminskog, piridinskog i tiazolskog atoma azota. Tridentatnom koordinacijom liganda nastaju dva petočlana helatna prstena koja su skoro u potpunosti planarna. Kod oba kompleksa geometrija je deformisana oktaedarska usled ograničenja uglova koordinacionih veza. Metal-ligand veze su u opsegu 2,300-2,400 Å. U spoljašnjoj sferi oba kompleksa nalaze se dva perhloratna anjona, dok kompleks 2 kristališe kao dihidrat. Kompleksi kristališu u monokliničnom kristalnom sistemu ali u različitim prostornim grupama (1: C2/c; **2**: $P2_1/n$). Cd(II) jon u kompleksu **1** se nalazi u specijalnom položaju (Vikofovo slovo e) na osi 2.

Kristalno pakovanje oba kompleksa je zasnovano na klasičnim vodoničnim interakcijama i elektrostatičkim interakcijama. Dodatno, pakovanje kompleksa 2 je stabilizovano i C-H··· π interakcijama.

SYNTHESIS AND CHARACTERIZATION OF Cd(II) COMPLEXES WITH (1,3-THIAZOL-2-YL)HYDRAZONES

S. B. Marković^a, A. Višnjevac^b, N. R. Filipović^c, T. R. Todorović^a

^a University of Belgrade – Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia; ^bDivision of Physical Chemistry, Institute Ruđer Bošković, Bijenička cesta 54, Zagreb, Croatia; ^c University of Belgrade – Faculty of Agriculture, Nemanjina 6, Belgrade, Serbia

e-mail: markovics@chem.bg.ac.rs

A novel Cd(II) complexes, $[Cd(HL1)_2](ClO_4)_2$ (1) (Figure 1) and $[Cd(HL2)_2](ClO_4)_2$ ·2H₂O (2) (Figure 2), with (1,3-thiazol-2-yl)hydrazones were prepared and characterized by a single crystal X-ray diffraction analysis.

Figure 2. Molecular structure of the complex 2. For clarity, hydrogen atoms, perchlorate anions and crystalline water molecules have been omitted.

Slika 2. Molekulska struktura kompleksa 2. Atomi vodonika, perhloratni joni i molekuli kristalne vode su izostavljeni zbog preglednosti.

Coordination number of Cd(II) is six in both cases and the ligands are coordinated in neutral form via NNN donor atoms set: pyridine and azomethine nitrogen atoms and nitrogen atom from thiazole ring. Two almost completely planar five-membered chelate rings are formed due to tridentate coordination of the ligands. In both complexes geometry is distorted octahedral which is consequence of the limitation of angles in coordination bonds. The metalligand bonds are in the range of 2.300-2.400 Å. In the outer sphere of both complexes there are two perchlorate anions, while complex 2 crystallizes as a dihydrate. Both complexes crystallize in a monoclinic crystal system, but in different space groups (1: C2/c; 2: $P2_1/n$). Cd(II) ion in complex 1 resides in a special position with site symmetry 2 (Wyckoff letter e).

Crystal packings of both complexes are based on classical hydrogen bonds and electrostatic interactions, while the packing of complex 2 is additionally stabilized by C-H $\cdots\pi$ interactions.

МОНО- И ДИНУКЛЕАРНИ ХЛОРО КОМПЛЕКСИ Cu(II) CA ХИДРАЗОНОМ 2-АЦЕТИЛПИРИДИНА И ЖИРАРОВОГ Т РЕАГЕНСА

<u>М. Миленковић</u>^а, А. Певец⁶, Б. Чобељић^а, И. Турел⁶, К. Анђелковић^а

^а Хемијски факултет, Универзитет у Београду, Студентски трг 12-16, 11000 Београд, Србија; ^б Факултет за хемију и хемијску технологију, Универзитет у Јубљани, Вечна пот 113, 1000 Љубљана, Словенија e-mail: mrm@chem.bg.ac.rs

Мононуклеарни (1) и динуклеарни (2) хлоро комплекси Cu(II) синтетисани су у реакцији Cu(BF₄)₂·6H₂O и лиганда HLCl у метанолу. Раствор је рефлуктован 4 сата. Спорим испаравањем растварача током десет дана у фрижидеру, добијене су две врсте зелених кристала погодних за рендгенску структурну анализу. Главни производ је једињење 1, док се 2 добија у траговима. Комплекс 1 се састоји из комплексног катјона [CuLCl]⁺ и неуређеног BF₄⁻ анјона. Комплексни катјон има тридентатни цвитер-јонски лиганд L координован за јон Cu(II) преко NNO донора сета атома док четврто координационо место заузима јон Cl⁻ (слика 1). Координационо окружење око јона Cu(II) је деформисано квадратно-планарно.

Комплекс 2 кристалише у моноклиничној просторној групи $P_{2_1/n}$, са асиметричном јединицом коју чине један јон Cu(II), цвитер-јонски лиганд L, један лиганд Cl⁻ и један контра јон BF₄⁻. Кристална структура динуклеарног комплекса се састоји од независног центра Cu1 координованог за три донорска атома лиганда (N1, N2 и O1) и два хлоро лиганда координована мосно (слика 2). Окружење око сваког Cu(II) је деформисана квадратна-пирамида са индексом тригоналности (τ_5) од 0,17.

Слика 1. ORTEP приказ 1.

Слика 2. ORTEP приказ 2.

MONO- AND DINUCLEAR CHLORO Cu(II) COMPLEXES WITH 2-ACETYLPYRIDINE GIRARD'S T HYDRAZONE

M. Milenković^a, A. Pevec^b, B. Čobeljić^a, I. Turel^b, K. Anđelković^a

^a Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; ^b Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia; e-mail: mrm@chem.bg.ac.rs

The mononuclear (1) and dinuclear (2) Cu(II) complexes were synthesized by the reaction of Cu(BF₄)₂·6H₂O and ligand HLCl in methanol. The solution was refluxed for 4 h. After slow evaporation of solvent in refrigerator during ten days, two kinds of green crystals suitable for X-ray analysis were formed. The main fraction corresponds to compound 1, while complex 2 was obtained only in traces. Complex 1 consists of one complex cation [CuLCl]⁺ and disordered BF₄⁻ anion. The complex cation features a four-coordinate Cu(II) center with the NNO donor set of tridentate zwitter-ionic ligand L and the Cl⁻ ion occupaing the fourth coordination site (Figure 1). The coordination geometry around Cu(II) may be described as a distorted square planar.

Complex 2 crystallizes in the monoclinic space group $P2_1/n$, with the asymmetric unit comprising one Cu(II) centre, zwitter-ionic ligand L, one Cl⁻ ion and BF₄⁻ counter anion. The crystal structure displays a centrosymmetric dinuclear complex with the crystallographically independent Cu1 centre being coordinated to three donor atoms (N1, N2 and O1) of L and two bridging chlorides (**Figure 2**). The Cu(II) ion adopts a distorted square pyramidal geometry with an index of trigonality (τ_5) of 0.17.

Figure 1. ORTEP presentation of the 1.

Figure 2. ORTEP presentation of the 2.

КРИСТАЛНЕ СТРУКТУРЕ КОМПЛЕКСА Сu(II) И Co(II) CA АНЈОНОМ 4-НИТРО-3-ПИРАЗОЛ КАРБОКСИЛНЕ КИСЕЛИНЕ КАО ЛИГАНДОМ И НОВИ КРИСТАЛНИ ОБЛИК ЛИГАНДА

Ж. К. Јаћимовић ^a, <u>C. Б. Новаковић</u> ^б, Г. А. Богдановић ^б, G. Giester ^u, М. Косовић ^a, E. Libowitzky ^u

^а Металуршко технолошки факултет, Универзитет Црне Горе, Џорџа Вашингтона бб, Подгорица, Црна Гора; ^б Институт за нуклеарне науке Винча, Лабораторија за теоријску физику и физику кондензоване материје, П.П. 522 Београд, Универзитет у Београду, Србија; ^ч Institut für Mineralogie und Kristallographie, Fakultät für Geowissenschaften, Geographie und Astronomie, Univ. Wien, Althanstr. 14, A-1090 Wien, Austria e-mail: snovak@vin.bg.ac.rs

У овом раду представљамо синтезу и кристалну структуру бинуклеарних комплекса Cu(II) и Co(II) са анјоном 4-нитро-3-пиразол карбоксилне киселине као лигандом. Ова једињења су редак пример комплекса метала са 3,4-супституисаним дериватима пиразола као мостовним лигандима и прве кристалне структуре прелазних метала са 4-нитро-3-пиразол карбоксилним лигандом. До сада су познате две кристалне структуре са наведеним лигандом [1], а овде такође представљамо кристалну структуру његове амонијум-соли. Анализиран је електростатички потенцијал као показатељ реактивности молекула у циљу испитивања промене електростатичких својстава лиганда након координације.

Кристалографски подаци: (I) C₄H₂N₃O₄·NH₄, ромбични, P2₁2₁2₁, a = 6,6562(3), b = 8,3692(4), c = 12,5687(7) Å, V = 700,17(6) Å³, Z = 4, $R_1 = 3,33\%$ за 2667 независних рефлексија и 133 параметара; (II) C₁₄H₂₀Cu₂N₈O₁₂, триклинични, P-1, a = 5,0863(6), b = 8,8110(9), c = 12,7192(14) Å, a = 83,977(4), $\beta = 88,281(3)$, $\gamma = 82,743(3)^\circ$, V = 562,25(11) Å³, Z = 1, $R_1 = 3,33\%$ za 4331 независних рефлексија и 175 параметара; (III) C₈H₁₄Co₂N₆O₁₄·2H₂O, моноклинични, P2₁/c, a = 8,9689(11), b = 6,4035(8), c = 16,4509(19) Å, $\beta = 102,930(2)^\circ$, V = 920,86(19) Å³, Z = 1, $R_1 = 1,80\%$ за 3531 независних рефлексија и 158 параметара.

[1] Ž. Jaćimović, K. Kosović, V. Kastratović, B. Barta Holló, K. Mészáros-Szécsényi,
 I.M. Szilágyi, N. Latinović, Lj. Vojinović-Ješić, M. Rodić, *J. Therm. Anal. Calor.*, 133 (2018) 813–821.

CRYSTAL STRUCTURES OF Cu(II) AND Co(II) COMPLEXES WITH 4-NITRO-3-PYRAZOLE CARBOXYLIC ACID LIGAND AND NEW CRYSTAL FORM OF THE LIGAND

Ž. K. Jaćimović ^a, <u>S. B. Novaković</u> ^b, G. A. Bogdanović ^b, G. Giester ^c, M. Kosović ^a, E. Libowitzky ^c

^a Faculty of Metallurgy and Technology, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro; ^bVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia; ^c Institut für Mineralogie und Kristallographie, Fakultät für Geowissenschaften, Geographie und Astronomie, Univ. Wien, Althanstr. 14, A-1090 Wien, Austria

e-mail: snovak@vin.bg.ac.rs

The present study reports the synthesis and crystal structure of binuclear complexes of Cu(II) and Co(II) with 4-nitro-3-pyrazole carboxylic acid based ligand. These compounds represent rare examples of the metal complexes comprising 3,4-substituted pyrazole derivatives as a bridging ligand and also the first crystal structures of the transition metal complexes with ligands derived from 4-nitro-3-pyrazolecarboxylic acid. Recently, the crystal structures of the same ligand in neutral and mixed neutral/anionic form have been reported [1]. Here we also report the third form of this ligand, where it is present in a fully deprotonated anionic form within the ammonium salt. The electrostatic potential as a descriptor of reactivity was also calculated in order to examine the changes in ligand electrostatic preferences upon its coordination.

Crystallographic data: (I) C₄H₂N₃O₄·NH₄, Orthorhombic, $P2_12_12_1$, a = 6.6562(3), b = 8.3692(4), c = 12.5687(7) Å, V = 700.17(6) Å³, Z = 4, $R_1 = 3.33\%$ for 2667 independent reflections and 133 parameters; (II) C₁₄H₂₀Cu₂N₈O₁₂, Triclinic, P-1, a = 5.0863(6), b = 8.8110(9), c = 12.7192(14) Å, a = 83.977(4), $\beta = 88.281(3)$, $\gamma = 82.743(3)^\circ$, V = 562.25(11) Å³, Z = 1, $R_1 = 3.33\%$ for 4331 independent reflections and 175 parameters; (III) C₈H₁₄Co₂N₆O₁₄·2H₂O, Monoclinic, $P2_1/c$, a = 8.9689(11), b = 6.4035(8), c = 16.4509(19) Å, $\beta = 102.930(2)^\circ$, V = 920.86(19) Å³, Z = 1, $R_1 = 1.80\%$ for 3531 independent reflections and 158 parameters.

 Ž. Jaćimović, K. Kosović, V. Kastratović, B. Barta Holló, K. Mészáros-Szécsényi, I.M. Szilágyi, N. Latinović, Lj. Vojinović-Ješić, M. Rodić, *J. Therm. Anal. Calor.*, 133 (2018) 813–821.

ВОДА У АЛУАУДИТСКОМ ТИПУ СТРУКТУРЕ: СИНТЕЗА, КРИСТАЛНА СТРУКТУРА И МАГНЕТНА СВОЈСТВА С03(AsO4)0,5(HAsO4)2(H2AsO4)0,5(H2O)0,5

Т. Ђорђевић^а, Љ. Карановић⁶, <u>З. Јагличић</u>^в, М. Јагодич^в

^а Универзитет у Бечу, Институт за минералогију и кристалографију, Althansstr. 14, A-1090 Беч, Austrija, ^b Лабораторија за кристалографију, Рударско-геолошки факултет, Универзитет у Београду, Ђушина 7, 11000 Београд, Србија, ^в Институт за Математику, Физику и Механику и Факултет за Грађевину и геодезију, Универзитет у Љубљани

e-mail: tamara.djordjevic@univie.ac.at

Монокристали новог једињења трикобалт(II) хемиарсенат(V) ди[хидрогенарсенат(V)] хеми[дихидрогенарсенат(V)] хемихидрата, Co₃(AsO₄)_{0,5}(HAsO₄)₂ (H₂AsO₄)_{0,5}(H₂O)_{0,5} (Ha3Bahor CoAs-алуаудит) синтетисани су у хидротермалним условима. CoAs-алуаудит је нови члан структурно сличних протонованих арсената [просторна група C2/c, a = 11,698(5), b = 12,571(3), c = 6,7705(14) Å, $\beta = 113,25$ (3)°, V = 914,8(5) Å³, Z = 4]. У јединичној ћелији CoAs-алуаудита, један од два атома Co, један од два As и један од седам O смештени су у специјалним положајима 4*e*, са симетријом места 2. Кристална структура се састоји од бесконачних ланаца дуж правца [10 1], формираних од октаедара CoO₆ који деле заједничке ивице.

Закривљени октаедарски ланци су међусобно повезани са тетраедрима $[(As1O_4)_{0.5}(H_2As1O_4)_{0.5}]^{2-}$ и $[HAs2O_4]^{2-}$ формирајући хетерополиедарску тродимензионалну отворену структуру са два типа паралелних канала. Оба канала, 1 и 2, паралелна су са *с*-осом и налазе се у положајима (1/2, 0, *z*) и (0, 0, *z*). Атоми водоника H2 и H4 из хидроксилних група O2H2 и O4H4, смештени су у каналу 1, док су у каналу 2 пронађени некоординисани

молекули воде H_2O7 у полузаузетим специјалним положајима 4*e*, и атоми водоника из O6H6-хидроксилне групе. Инфрацрвени и рамански спектри монокристала мерени су да би се добиле додатне информације о анјонским групама, а посебно о кратким водоничним везама. Фреквенција истезања OH одговара међуатомским растојањима O···O.

Резултати магнетних мерења потврђују квази-једнодимензиону структуру двовалентних јона кобалта. Они су антиферомагнетно повезани са параметром интеракције међу ланцима $J \approx -8 \text{ cm}^{-1}$ и параметром интеракције $J' \approx -2 \text{ cm}^{-1}$ који важи испод Нилове температуре од 3,4 К.
WATER IN THE ALLUAUDITE TYPE STRUCTURE: SYNTHESIS, CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES OF C03(AsO4)0.5(HAsO4)2(H2AsO4)0.5(H2O)0.5

T. Đorđević ^a, Lj. Karanović ^b, <u>Z. Jagličić</u> ^c, M. Jagodič ^c

^a University of Vienna, Institut für Mineralogie und Kristallographie, Althansstr. 14, A-1090 Vienna, Austria, ^b University of Belgrade, Faculty of Mining and Geology, Laboratory for Crystallography, University of Belgrade, Dušina 7, 11000 Belgrade, Serbia, ^c Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic, Engineering, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia e-mail: tamara.djordjevic@univie.ac.at

Single crystals of the new compound tri-Co(II)hemi-(arsenate(V))di-[hydrogen arsenate(V)]hemi-[di-hydrogenarsenate(V)]hemihydrate, $Co_3(AsO_4)_{0.5}(HAsO_4)_2(H_2AsO_4)_{0.5} \cdot (H_2O)_{0.5}$ (denoted CoAs-alluaudite) were grown under hydrothermal conditions. CoAsalluaudite represents a new member of alluaudite-like protonated arsenates [space group C2/c, a = 11.698 (5), b = 12.571 (3), c = 6.7705 (14) Å, $\beta = 113.25$ (3) °, V = 914.8 (5) Å³, Z = 4]. In the unit cell of CoAs-alluaudite, the one of the two Co, one of the two As and one of the seven O atoms lie at 4*e* special positions, with site symmetries 2. The crystal

structure consists of the infinite edgeshared CoO₆ octahedra chains, running along the $[1 \ 0 \ \overline{1}]$ direction. The curved chains are interconnected by $[(As1O_4)_{0.5}(H_2As1O_4)_{0.5}]^2$ and $[HAs2O_4]^2$ ⁻ tetrahedra forming a heteropolyhedral 3D open framework with two types of parallel channels. Both 1 and 2 channels are running along the *c*-axis and are located at positions (1/2, 0, *z*) and (0, 0, *z*), respectively. The H2 and H4 hydrogen atoms of O2H2 and O4H4 hydroxyl groups are

situated in channel 1, while in channel 2 the uncoordinated water molecule H_2O7 at halfoccupied 4*e* special positions and hydrogen atoms of O6H6 hydroxyl group were found. Infrared and single-crystal Raman spectra were measured and evaluated in order to obtain further information on the anion groups and especially on the short hydrogen bonds. The OH stretching frequency is in good agreement with the observed O···O distances.

The results of the magnetic investigations confirm the quasi one dimensional structure of divalent cobalt ions. They are antiferromagnetically coupled with the intrachain interaction parameter of $J \approx -8 \text{ cm}^{-1}$ and interchain parameter of $J' \approx -2 \text{ cm}^{-1}$ that become effective below the Néel temperature of 3.4 K.

SINTEZA I STRUKTURA $H_2L[CdBr_3(SCN)] \cdot H_2O$ (L = 2-ACETILPIRIDIN-AMINOGVANIDIN)

M. M. Radanović^a, M. V. Rodić^a, Lj. S. Vojinović-Ješić^a, P. Weiss^b, V. M. Leovac^a

^a Univerzitet u Novom Sadu, Prirodno-matematički fakultet, Trg Dositeja Obradovića 3, Novi Sad, Srbija; ^bGraz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria

e-mail: mirjana.lalovic@dh.uns.ac.rs

Poslednjih godina, zahvaljujući jednostavnosti dizajna sinteze kompleksa metala sa 2-acetilpiridin-aminogvanidinom, kao i veoma izraženoj antioksidativnoj aktivnosti i jakoj fotoluminescenciji dobijenih kompleksa, ova Šifova baza izdvojila se kao veoma interesantan ligand. Detaljnim izučavanjem koordinacione hemije ovog jedinjenja, ustanovljeno je da je za koordinaciju ovog helatnog liganda neophodno tokom sinteze koristiti reagens za deprotonaciju, jer se u njegovom odsustvu dobijaju kompleksi u kojima Šifova baza ima ulogu kontra-jona. Među poslednjima, posebno treba istaći kompleks formule $H_2L[CdBr_3(SCN)] \cdot H_2O$ (slika 1), koji se dobija reakcijom vodenog rastvora CdBr₂ sa tiocijanatnom soli liganda.

U ovom kompleksu Cd(II) smešten je u blago deformisanom ($\tau_4 = 0.96$) tetraedarskom okruženju tri bromidna i jednog tiocijanatnog liganda. Ugao pod kojim je tiocijanato ligand koordinovan ima vrednost od 92,6(5)°. Dužine svih veza aminogvanidinskog ostatka imaju vrednosti između onih karakterističnih za jednostruku i dvostruku vezu, dok je C2–N3 veza dvostruka. Katjon Šifove baze poseduje visok stepen planarnosti, a svi geometrijski parametri su u saglasnosti sa onima dobijenim za hloridnu, sulfatnu i tiocijanatnu so liganda [1].

Retkost postojanja strukturno okarakterisanih tetrakoordinovanih $[MX_3(SCN)]^{n-}$ i $[MX_3(NCS)]^{n-}$ jona, gde M predstavlja bilo koji metal i X bilo koji halogen, potvrđena je pretragom Kembričke banke strukturnih podataka. Ustanovljeno je ne samo da ovde opisani kompleksni anjon $[CdBr_3(SCN)]^{2-}$ nije ranije strukturno okarakterisan, već i da predstavlja tek drugi primer takvog anjona među kompleksima metala uopšte.

Kristalografski podaci: monoklinični kristalni sistem, *P2/c*, a = 12,3168(5), b = 6,4223(3), c = 23,4332(9) Å, $\beta = 98,687(4)^{\circ}, V = 1832,35(13)$ Å³, Z = 4. Utačnjavanje sa F^2 (192 parametara) dalo je $R_1 = 0,0611, wR_2 = 0,1405,$ S = 1,126 za sve podatke, i $R_1 = 0,0391$ za 2917 refleksija sa $I \ge 2\sigma(I)$.

Ovaj rad je deo istaživanja finansiranog od strane Ministarstva prosvete, nauke i tehnološkog razvoja Republike Srbije (172014).

[1] M.M. Radanović, S.B. Novaković, Lj.S. Vojinović-Ješić, M.V. Rodić, V.M. Leovac, J. Serb. Chem. Soc., 83 (2018) 157–166.

SYNTHESIS AND STRUCTURE OF $H_2L[CdBr_3(SCN)] \cdot H_2O$ (L = 2-ACETYLPYRIDINE-AMINOGUANIDINE)

M. M. Radanović^a, M. V. Rodić^a, Lj. S. Vojinović-Ješić^a, P. Weiss^b, V. M. Leovac^a

^a University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, Novi Sad, Serba; ^b Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria e-mail: mirjana.lalovic@dh.uns.ac.rs

In the last few years, due to the ease of designing the synthesis of metal complexes with 2-acetylpyridine-aminoguanidine, as well as strong antioxidant activity and pronounced photoluminescence of the obtained compounds, this Schiff base became the focus of our research. A thorough investigation on its coordination chemistry led to a conclusion that the presence of some deprotonating agent during the synthesis is mandatory in order to obtain complexes with chelating ligand coordinated. On the contrary, the absence of this kind of reagent, lead to the formation of the complexes in which the Schiff base has a role of counterion. One of the later complexes, *i.e.* $H_2L[CdBr_3(SCN)] \cdot H_2O$ (Figure 1) is obtained in the reaction of an aquous solution of CdBr₂ and the thyocyanate ligand salt.

In this complex Cd(II) is situated in a slightly distorted tetrahedral environment ($\tau_4 = 0.96$) of three bromides and one thiocyanate ligand. The angle of SCN-coordination is 92.6(5)°. All bond lengths in the aminoguanidine residue have values between those characteristic for a single and a double bond, while the C2–N3 bond is double. The cation of the Shiff base shows a high degree of planarity and all the geometric parameters are in concordance with those obtained for chloride, sulfate and thiocyanate ligand salts [1].

The rarity of structurally characterized $[MX_3(SCN)]^{n-}$ and $[MX_3(NCS)]^{n-}$ ions, where M stands for any metal and X for any halogen, is assessed by the search of Cambridge Structural Database. This search revealed not only that this is the first structural report on this kind of complex anion with Cd(II), but also that it is the second structure so far of this anion-type with metals in general.

Crystallographic data: monoclinic crystal system, P2/c, a = 12.3168(5), b = 6.4223(3), c = 23.4332(9) Å, $\beta = 98.687(4)^\circ$, V = 1832.35(13) Å³, Z = 4. Refinement based on F^2 (192 parameters): $R_1 = 0.0611$, $wR_2 = 0.1405$, S = 1.126 for all data, and $R_1 = 0.0391$ for 2917 reflections with $I \ge 2\sigma(I)$.

Figure 1. Molecular structure of the complex

[1] M.M. Radanović, S.B. Novaković, Lj.S. Vojinović-Ješić, M.V. Rodić, V.M. Leovac, J. Serb. Chem. Soc., 83 (2018) 157–166.

KRISTALNE STRUKTURE HL I [Co(HL)Br₂(H₂O)] HL = SEMIKARBAZON METIL-PIRUVATA

M. V. Rodić^a, S. Belošević^b, V. M. Leovac^a

^a Prirodno-matematički fakultet, Univerzitet u Novom Sadu, Trg Dositeja Obradovića 3, 21000 Novi Sad, Srbija.^b Fakultet tehničkih nauka, Univerzitet u Prištini, Knjaza Miloša 7, 38220 Kosovska Mitrovica, Srbija e-mail: marko.rodic@dh.uns.ac.rs

U ovom radu je po prvi put opisana kristalna struktura semikarbazona metil-piruvata (**HL**) kao i sinteza i kristalna struktura njegovog Co(II) kompleksa formule $[Co(HL)Br_2(H_2O)]$ (1).

Centralni atom kompleksa 1, Co(II), nalazi se u deformisanom oktaedarskom okruženju koje čine dva *cis*-orijentisana bromidna jona (jedan u aksijalnom, a drugi u ekvatorijalnom položaju), tridentatno koordinovani HL u ekvatorijalnoj ravni, kao i molekul vode u aksijalnom položaju. HL je koordinovan kao O_2N tridentat, preko karboksilatnog atoma kiseonika, azometinskog atoma azota i karbonilnog atoma kiseonika.

Pakovanje molekula u kristalnim strukturama HL i 1 je proučeno analizama odgovarajućih Hiršfeldovih površina. Dodatno, u slučaju HL, podaci o energijama međumolekulskih interakcija su dobijeni proračunima pomoću CE-B3LYP modela energija, koristeći program *CrystalExplorer* [1].

Kristalografski podaci za **HL**: C₅H₉N₃O₃, triklinični kristalni sistem, $P\overline{1}$, a = 4,1764(4) Å, b = 7,4068(10) Å, c = 12,2230(13) Å, $\alpha = 90,144(10)^{\circ}$, $\beta = 97,506(9)^{\circ}$, $\gamma = 91,316(10)^{\circ}$, V = 374,76(7) Å³, Z = 2, izmereno 1393 nezavisnih refleksija, utačnjavano 114 parametara, $R_1 = 0,038$, $wR_2 = 0,116$, S = 1,090.

Kristalografski podaci za 1: C₅H₁₁Br₂CoN₃O₄, triklinični kristalni sistem, *P*I, a = 10,3796(3) Å, b = 10,9107(4) Å, c = 12,5905(5) Å, $\alpha = 101,435(3)^{\circ}$, $\beta = 101,558(3)^{\circ}$, $\gamma = 115,576(3)^{\circ}$, V = 1192,86(8) Å³, Z = 2, izmereno 5636 nezavisnih refleksija, utačnjavano 286 parametara, $R_1 = 0,027$, $wR_2 = 0,063$, S = 1,020.

[1] C.F. Mackenzie, P.R. Spackman, D. Jayatilaka, M.A. Spackman, *IUCrJ*, **4** (2017) 575–587.

CRYSTAL STRUCTURES OF HL AND [Co(HL)Br₂(H₂O)] HL = METHYL PYRUVATE SEMICARBAZONE

M. V. Rodić^a, S. Belošević^b, V. M. Leovac^a

^a Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia. ^b Faculty of Technical Sciences, University of Priština, Knjaza Miloša 7, 38220 Kosovska Mitrovica, Serbia e-mail: marko.rodic@dh.uns.ac.rs

This paper reports the crystal structure of methyl pyruvate semicarbazone (**HL**), as well as synthesis and crystal structure of its Co(II) complex $[Co(HL)Br_2(H_2O)]$ (1).

The central atom of the complex 1, Co(II), is situated in a deformed octahedral environment made of two *cis*-oriented bromide ions (one in the axial and one in the equatorial position), tridentately coordinated **HL** in the equatorial coordination plane, and a water molecule in the axial position. **HL** is coordinated in O_2N tridentate mode, through carboxylate oxygen atom, azomethine nitrogen atom, and carbonyl oxygen atom.

Crystal packings of **HL** and **1** are studied by the analysis of respective Hirshfeld surfaces, while in the case of **HL**, additional insight in intermolecular interactions was obtained by calculation of interaction energies using CE-B3LYP model energies with *CrystalExplorer* [1].

Crystallographic data for HL: C₅H₉N₃O₃, triclinic crystal system, *P*l, a = 4.1764(4) Å, b = 7.4068(10) Å, c = 12.2230(13) Å, $\alpha = 90.144(10)^{\circ}$, $\beta = 97.506(9)^{\circ}$, $\gamma = 91.316(10)^{\circ}$, V = 374.76(7) Å³, Z = 2, 1393 independent reflections measured, 114 parameters refined, $R_1 = 0.038$, $wR_2 = 0.116$, S = 1.090.

Crystallographic data for 1: $C_5H_{11}Br_2CoN_3O_4$, triclinic crystal system, *P*1, a = 10.3796(3) Å, b = 10.9107(4) Å, c = 12.5905(5) Å, $a = 101.435(3)^\circ$, $\beta = 101.558(3)^\circ$, $\gamma = 115.576(3)^\circ$, V = 1192.86(8) Å³, Z = 2, 5636 independent reflections measured, 286 parameters refined, $R_1 = 0.027$, $wR_2 = 0.063$, S = 1.020.

[1] C.F. Mackenzie, P.R. Spackman, D. Jayatilaka, M.A. Spackman, *IUCrJ*, 4 (2017) 575–587.

Zn(II) KOMPLEKSI SA TIAZOLIL-HIDRAZONIMA: MOLEKULSKA I KRISTALNA STRUKTURA

J. Araškov^a, A. Višnjevac^b, N. Filipović^c, T. Todorović^a

^a Univerzitet u Beogradu – Hemijski fakultet, Beograd, Srbija; ^b Zavod za fizičku kemiju – Institut Ruđer Bošković, Zagreb, Hrvatska; ^c Univerzitet u Beogradu – Poljoprivredni fakultet, Beograd, Srbija

e-mail: araskovjovana14@gmail.com

Sintetisana su i strukturno okarakterisana dva nova kompleksa Zn(II) sa tiazolilhidrazonskim ligandima HLS1 i HLS2. Iako su tokom sinteze primenjeni isti reakcioni uslovi, korišćena ista polazna so, ZnCl₂·2H₂O, i strukturno veoma slični ligandi, dobijeni su kompleksi različitih geometrija. Koordinacioni broj kompleksa **1-Cl** sa HLS1 ligandom je pet, a geometrija je deformisana kvadratna piramida (slika 1).

Kompleks 2-Cl ima koordinacioni broj šest i deformisanu oktaedarsku geometriju (slika 2). Molekulsku strukturu kompleksa 1-Cl čini centralni jon metala, jedan ligand (HLS1) koordinovan tridentatno preko NNN donorskih atoma piridina, imino grupe i 1,3-tiazolovog prstena, kao i dva koordinovana hloridna jona. Dobijeni kompleks je neutralan. Kod kompleksa 2-Cl za centralni jon metala su kooridnovana dva HLS2 liganda 11 neutralnom obliku, na isti način kao u slučaju kompleksa 1-Cl, što za posledicu ima formiranje katjonskog kompleksa pozitivno naelektrisanje čije je neutralisano ZnCl₄²⁻ jonom. Kompleksi

Slika 1. Prikaz molekulske strukture **1-Cl.** Termalni elipsoidi su prikazani sa 50% verovatnoće.

kristališu u monokliničnom kristalnom sistemu, ali u različitim prostornim grupama (1-Cl: $P2_1/c$ i 2-Cl: C2/c). U kompleksu 2-Cl joni metala se nalaze u specijalnom položaju na osi drugog stepena (Vikofov položaj 4*e*). Kristalno pakovanje oba kompleksa se zasniva na klasičnim N–H/Cl interakcijama. Eksperimenti difrakcije praha oba kompleksa potvrdili su da su dobijeni jednofazni proizvodi.

Zn(II) COMPLEXES WITH THIAZOLYL-HYDRAZONES: MOLECULAR AND CRYSTAL STRUCTURES

J. Araškov^a, A. Višnjevac^b, N. Filipović^c, T. Todorović^a

^a University of Belgrade – Faculty of Chemistry, Belgrade, Serbia; ^b Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia; ^c University of Belgrade – Faculty of Agriculture, Belgrade, Serbia. e-mail: araskovjovana14@gmail.com

Two novel Zn(II) complexes with thiazolyl-hydrazones ligands HLS1 and HLS2, have been synthesized and characterized. Although the syntheses were performed under the same reaction conditions, using the same starting salt ZnCl₂·2H₂O and structurally very similar ligands, the geometries of the obtained complexes are different. The

coordination number of the complex 1-Cl with HLS1 is five and the geometry is distorted square pyramidal (Figure 1). The complex 2-Cl has coordination number six and distorted octahedral geometry. Thus, the molecular structure of complex 1-Cl consists of one metal center, one HLS1 ligand coordinated tridentately via NNN atoms from pyridine, imine and 1,3-thiazole ring and two coordinated chloride ions. The obtained complex is neutral. The structure of complex 2-Cl consists of one metal center, two HLS2 ligands coordinated in the same way as in the previous complex. In this case the cationic complex is formed and the charge is balanced by $ZnCl_4^{2-}$. Both complexes crystallize in a monoclinic crystal system, but in the different space groups (1-Cl: $P2_1/c$ and 2-Cl: C2/c). Metal ions in 2-Cl are residing on a special position with site symmetry 2 (Wyckoff letter e). The crystal packing of these complexes is based on classical N-H/Cl hydrogen interactions. Powder X-ray diffraction experiments confirmed the presence of a single phase in both samples.

Figure 2. Drawing of molecular structure of 2-Cl. Thermal ellipsoides are shown at the 50% probability level.

KRISTALNA STRUKTURA BINUKLEARNOG KOMPLEKSA BAKRA(II) SA S-IZOPROPIL DERIVATOM TIOSALICILNE KISELINE

<u>A. Stanković</u> ^a, A. Bukonjić ^a, D. Tomović ^a, M. Nikolić ^a, M. Mijajlović ^a, A. Kočović ^a, N. Mijailović ^a, V. Jevtić ^b, Z. Ratković ^b, I. Potočňák ^c, E. Samoľová ^c, S. Trifunović ^b, G. Radić ^a

^a Univerzitet u Kragujevcu, Srbija, Fakultet medicinskih nauka, Odsek za farmaciju, Svetozara Markovića 69, 34000 Kragujevac; ^b Institut za hemiju, Prirodno-matematički fakultet, Radoja Domanovića 12, 34000 Kragujevac, Republika Srbija; ^c Institute of Chemistry, Faculty of Science, P.J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia

e-mail: ana stankovic@outlook.com

Binuklearni kompleks bakra dobijen je direktnom reakcijom bakar(II)-nitrata trihidrata i S-izopropil derivata tiosalicilne kiseline u molskom odnosu 1:2. Reakciona smeša je mešana na magnetnoj mešalici uz zagrevanje na vodenom kupatilu na temperaturi od 50 °C i postepeno dodavanje ekvimolarne količine vodenog rastvora litijum hidroksida. Dobijeni talog je filtriran, ispran i osušen tokom nekoliko dana na vazduhu. Kristali pogodni za rendgensku strukturnu analizu dobijeni su sporom kristalizacijom iz matičnog vodenog rastvora.

Kristalografski podaci: empirijska formula $C_{20}H_{26}CuO_6S_2$, $M_r = 490,07$, triklinični kristalni sistem, prostorna grupa \mathbf{PI}_s talasna dužina 1,54184 Å, veličina kristala 0,099 × 0,046 × 0,034 mm³, dimenzije jedinične ćelije a = 9,5826(4) Å, b = 10,6872(5) Å, c = 11,4662(5) Å, $a = 85,198(4)^\circ$, $\beta = 87,656(4)^\circ$, $\gamma = 70,040(4)^\circ$. Kristalna struktura je rešena metodom teškog atoma primenom SHELXS, a utačnjena primenom SHELXL programa: $R_1 = 0,0666$, $wR_2 = 0,1696$.

Slika 1. Kristalna stuktura binuklearnog kompleksa bakra(II) sa S-izopropil derivatom tiosalicilne kiseline.

THE CRYSTAL STRUCTURE OF BINUCLEAR COPPER(II)-COMPLEX WITH S-ISOPROPYL DERIVATIVE OF THIOSALYCILIC ACID

<u>A. Stanković</u> ^a, A. Bukonjić ^a, D. Tomović ^a, M. Nikolić ^a, M. Mijajlović ^a, A. Kočović ^a, N. Mijailović ^a, V. Jevtić ^b, Z. Ratković ^b, I. Potočňák ^c, E. Samoľová ^c, S. Trifunović ^b, G. Radić ^a

^a University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34000 Kragujevac; ^b Department of Chemistry, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia; ^c Institute of Chemistry, Faculty of Science, P.J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia e-mail: ana stankovic@outlook.com

Binuclear copper(II)-complex was obtained by direct reaction of copper(II)nitrate thrihydrate and S-isopropyl derivative of thiosalycilic acid in a molar ratio of 1:2 and addition of an equimolar amount of lithium-hydroxide. Reaction mixture was heated and mixed on a magnetic stirrer at 50 °C for 3 hours. Crystals suitable for X-ray measurements were obtained by slow crystallization from water solution.

Crystallographic data: empirical formula C₂₀H₂₆CuO₆S₂, $M_r = 490.07$, triclinic crystal system, space group **P1**, wavelength 1.54184 Å, crystal size $0.099 \times 0.046 \times 0.034 \text{ mm}^3$, unit cell dimensions a = 9.5826(4) Å, b = 10.6872(5) Å, c = 11.4662(5) Å, $a = 85.198(4)^\circ$, $\beta = 87.656(4)^\circ$, $\gamma = 70.040(4)^\circ$. Crystal structure was solved by heavy atom method using SHELXS and refined using SHELXL program: $R_1 = 0.0666$, $wR_2 = 0.1696$.

Figure 1. The crystal structure of binuclear copper(II)-complex with S-isopropyl derivative of thiosalycilic acid

KALIJUM-ITRIJUMSKI SILIKAT DOPIRAN Er I Eu

P. Dabić^a, A. Kremenović^a, S. Kovač^a, B. Krueger^b, M. V. Rodić^c

^a Univerzitet u Beogradu, Rudarsko-geološki fakultet, Đušina 7, 11000 Beograd, Srbija; ^b Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria; ^c Univerzitet u Novom Sadu, Prirodno-matematički fakultet, Trg Dositeja Obradovića 3, 21000 Novi Sad, Srbija e-mail: predrag.dabic@rgf.bg.ac.rs

Monokristali jedinjenja sa do sada nepoznatim hemijskim sastavom, $K_3(Y_{1-x-y}Er_xEu_y)Si_2O_7$ dobijeni su tokom istraživanja usmerenog na dobijanje novih kalijumskih silikata sa elementima retkih zemalja. Prvi rezultati rendgenske strukturne analize pokazali su da je strukturni model ovog jedinjenja poznat u literaturi (K_3LuSi_2O_7 [1], K_3ScSi_2O_7 [2], K_3YSi_2O_7 [3]). U sklopu ovog istraživanja dobijena su i jedinjenja K_3ErSi_2O_7 i K_3YSi_2O_7, koja kristališu u istom strukturnom tipu kao i K_3LuSi_2O_7, K_3ScSi_2O_7 i K_3YSi_2O_7 (P. Dabić *et al.*, u pripremi).

Jedinjenja koja su predmet naših istraživanja sintetisana su metodom rasta kristala iz rastvora zagrejanih na temperaturi od 1173 K. Kao polazne supstance korišćeni su Y₂O₃, Er₂O₃ i Eu₂O₃ (u molskom odnosu 8:1:1), SiO₂ i KF (dodat u višku). Kao najzastupljeniji proizvod sinteze izdvajaju se prizmatični kristali heksagonalnog habitusa, koji su predmet ovog rada. Pored njih, u manjoj meri prisutni su i pločasti kristali heksagonalnog habitusa, koji će biti predmet daljeg istraživanja.

Početna ispitivanja obuhvatila su rendgensku difrakcionu analizu na monokristalu, rendgensku difrakciju na polikristalnom uzorku i skenirajuću elektronsku mikroskopiju (SEM) dopunjenu sa energetsko-disperzivnom spektroskopijom (EDS). Preliminarni rezultati pokazali su da ispitivano jedinjenje kristališe u prostornoj grupi $P6_3/mmc$ i odgovara već poznatom strukturnom modelu [1–3]. Rezultati SEM-EDS analize pokazali su prisustvo katjona Y, Er i Eu u strukturi.

Dalji koraci u ispitivanju obuhvatiće precizniju SEM-EDS hemijsku analizu na poliranim uzorcima, utačnjavanje strukturnog modela i ispitivanje luminescentnih pojava korišćenjem fotoluminescentne spektroskopije.

[1] I. Vidican, M.D. Smith, H.-C. zur Loye, J. Solid State Chem., 170 (2003) 203–210.
[2] J.D. Napper, R.C. Layland, M.D. Smith, H.-C. zur Loye, J. Chem. Crystallogr., 34 (2004) 347–351.

[3] A.M. Latshaw, G. Morrison, K.D. zur Loye, A.R. Myers, M.D. Smith, H.-C. zur Loye, *CrystEngComm*, **18** (2016) 2294–2302.

Er- AND Eu-DOPED POTASSIUM-YTTRIUM SILICATE

P. Dabić^a, A. Kremenović^a, S. Kovač^a, B. Krueger^b, M. V. Rodić^c

^a University of Belgrade, Faculty of Mining and Geology, Dušina 7, 11000 Belgrade, Serbia; ^b Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria; ^c University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia e-mail: predrag.dabic@rgf.bg.ac.rs

The compound with a previously unknown chemical composition $K_3(Y_{1-x-y}Er_xEu_y)Si_2O_7$ was obtained in form of single crystals during investigation focused on the synthesis of new potassium rare-earth silicates. The first results of X-ray structure analysis showed that the structural model of this compound is already known in the literature (K_3LuSi_2O_7 [1], K_3ScSi_2O_7 [2], K_3YSi_2O_7 [3]). Also, as a part of this project, compounds $K_3ErSi_2O_7$ and $K_3YDSi_2O_7$, which crystallize in the same structural type as $K_3LuSi_2O_7$, $K_3ScSi_2O_7$ and $K_3YSi_2O_7$, were obtained (P. Dabić *et al.*, in preparation).

The compounds that are the subject of our research were synthesized by the method of crystal growth from a solution heated at a temperature of 1173 K. The starting materials used were Y_2O_3 , Er_2O_3 and Eu_2O_3 (in a molar ratio 8:1:1), SiO₂ and KF (added in excess). The hexagonal prismatic crystals, which are the subject of this paper, are distinguished as the most abundant product of synthesis. Additional hexagonal platy crystals are also present in the batch and will be the subject of further research.

The initial investigation included single crystal X-ray diffraction analysis, X-ray powder diffraction and a scanning electron microscopy (SEM) equipped with energydispersive spectroscopy (EDS). Preliminary results showed that the investigated compound crystallizes in the space group $P6_3/mmc$ and is isotypic to the already known structural model [1–3]. The results of SEM-EDS analysis showed the presence of Y, Er and Eu cations in the structure.

Further steps in the investigation will include more precise SEM-EDS chemical analysis on polished samples, single crystal structure refinement and photoluminescent spectroscopy measurements.

[1] I. Vidican, M.D. Smith, H.-C. zur Loye, J. Solid State Chem., 170 (2003) 203–210.
[2] J.D. Napper, R.C. Layland, M.D. Smith, H.-C. zur Loye, J. Chem. Crystallogr., 34 (2004) 347–351.

[3] A.M. Latshaw, G. Morrison, K.D. zur Loye, A.R. Myers, M.D. Smith, H.-C. zur Loye, *CrystEngComm*, **18** (2016) 2294–2302.

Si/Al УРЕЂЕЊЕ СТРУКТУРЕ ТРИГОНАЛНОГ НИСКОТЕМПЕРАТУРНОГ КАРНЕГИТА

А. Радуловић^а, <u>С. Милош</u>⁶, З. Миладиновић^а, П. Вулић⁶

^а Институт за општу и физичку хемију, Студентски трг 12/V, 11000 Београд, Србија; ^b Рударско-геолошки факултет, Универзитет у Београду, Ђушина 7, 11000 Београд, Србија

е-пошта: predrag.vulic@rgf.bg.ac.rs

Структура нискотемпературног тригоналног карнегита (NaAlSiO₄) која је недавно решена из XRPD података и утачњена Ритвелдовом методом, структурно припада тектосиликатима (искључиво је изграђена од Q4-јединица). Она је попуњени дериват SiO₂ полиморфа кристобалита, где је једна половина тетраедарски координисаних позиција попуњена Al атомима. Укупни баланс наелектрисања се постиже када Na атоми заузму затворене интерстицијске положаје.

Структура је слична моделу идеализованог високотемпературног кристобалитског аристотипа и може се извести паралелним слагањем слојева изграђених од шесточланих прстенова (S6R). Прстенови су дитригонално дистордованог облика, GDGDGD (горе или доле) конформације, а ABC слагање слојева се постиже транслацијом сваког наредног слоја. Услед конформације прстенова структура постиже тригоналну симетрију просторне групе $P3_2$, a = 5,1234(2) и c = 12,4932(5) Å.

Постоји седам симетријски нееквивалентних општих положаја у структури. Један одговара атому натријума, четири атомима кисеоника и два атомима силицијума и алуминијума. Расподела Al и Si атома у тетраедарским положајима је утврђена на основу ²⁹Si and ²⁷Al MAS NMR спектара од којих сваки јасно показује само један пик, односно савршено Al/Si уређење где су сви Al-тетраедри усмерени на једну, а Si-тетраедри на супротну страну.

SI/AI ORDERING IN THE LOW-TEMPERATURE TRIGONAL CARNEGIEITE STRUCTURE

A. Radulović^a, <u>S. Miloš</u>^b, Z. Miladinović^a, P. Vulić^b

^a Institute of General and Physical Chemistry, Studentski trg 12/V, 11000 Belgrade, Sebia; ^b Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia

e-mail: predrag.vulic@rgf.bg.ac.rs

The structure of Low-temperature trigonal Carnegieite (NaAlSiO₄), recently solved from XRPD data and refined by Rietveld method, structurally belongs to tectosilicates (exclusively built-up from Q^4 -units). It is stuffed derivative of SiO₂ polymorph cristobalite, with one half of the tetrahedrally coordinated positions being occupied with Al atoms. The overall charge balance is achieved by Na atoms situated in closed intersticial positions.

The structure follows the model of idealized High-temperature cristobalite aristotype, and can be derived by parallel stacking of layers built up of six-membered tetrahedral rings (S6R). The rings are ditrigonally distorted in shape with UDUDUD (up or down) conformation, and the ABC-like stacking sequence is achieved by translation of each consecutive layer. Due to conformation of the rings the structure adopts trigonal $P3_2$ space group symmetry with a = 5.1234(2) and c = 12.4932(5) Å.

There are seven symmetrically non-equivalent general positions in the structure – one belonging to Sodium, four to Oxygene, and two to Silicon and Aluminium. The determination of the distribution of Al and Si atoms in the tetrahedral positions was done based on the ²⁹Si and ²⁷Al MAS NMR spectra, both showing clearly only one peak, and thus perfect Al/Si ordering with all Al-tetrahedra pointing in one, and Si-tetrahedra pointing in opposite direction.

STRUKTURNA, MIKROSTRUKTURNA I ELEKTRIČNA SVOJSTVA KERAMIKE BaSnO3 DOPIRANOG ANTIMONOM

<u>J. Vukašinović</u> ^a, M. Počuča-Nešić ^a, D. Luković Golić ^a, V. Ribić ^a, Z. Branković ^a, A. Dapčević ^b, S. Bernik ^c, G. Branković ^a

^a Institut za multidisciplinarna istraživanja, Univerzitet u Beogradu, Kneza Višeslava 1, 11030 Beograd, Srbija; ^b Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Karnegijeva 4, 11120 Beograd, Srbija; ^c Institut Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia

e-mail: jelena.vukasinovic@imsi.bg.ac.rs

BaSnO₃ (BSO) pripada grupi perovskitskih oksida kubne kristalne strukture. Ovaj materijal ima interesantna električna, optička i fotokatalitička svojstva zbog kojih ima široku potencijalnu primenu kao transparentni provodnik, senzor za gasove, fotokatalizator, dielektrični kondenzator. BSO je izolator sa širokim energetskim rascepom ($E_g = 3,1-3,4$ eV), ali dopiranjem se njegova električna svojstva mogu podešavati.

U ovom radu ispitivan je uticaj antimona kao dopanta (Sb^{3+}) na promene kristalne strukture, mikrostrukturnih i električnih svojstava dopiranog BaSnO₃. Smeše prahova BaCO₃, SnO₂ i Sb₂O₃ u odgovarajućim stehiometrijskim odnosima mehanohemijski su aktivirane u planetarnom kugličnom mlinu i nakon toga kalcinisane na 900 °C tokom 4 h. Tako pripremljeni prahovi su sinterovani metodom spark plazma sinterovanja (1200 °C tokom 5 min) kako bi se dobili keramički uzorci sastava BaSn_{1-x}Sb_xO₃ (x = 0,00; 0,04; 0,06; 0,08 i 0,10). Svi uzorci su okarakterisani rendgenskom difrakcionom analizom (XRD), visokorezolucionom transmisionom mikroskopijom (HRTEM) i skenirajućom elektronskom mikroskopijom (FESEM). Električna provodljivost BaSn_{1-x}Sb_xO₃ keramičkih uzoraka određena je merenjem strujno-naponske (*I–U*) karakteristike u različitim medijumima i na različitim temperaturama.

XRD analiza potvrdila je postojanje kubne BSO faze kao dominantne, i tetragonalne Ba₂SnO₄ kao sekundarne faze. FESEM analiza je pokazala homogenost mikrostrukture svih uzoraka, sa primetnim smanjenjem veličine zrna u dopiranim uzorcima. HRTEM mikrografije za nedopirani uzorak ukazuju na manje uređenu mikrostrukturu sa prisustvom amorfne faze u oblasti granice zrna. Dopirani uzorci pokazuju veći stepen kristaliničnosti, posebno u oblasti granice zrna bez prisustva defekata. Kod uzorka BaSn_{0,92}Sb_{0,08}O₃ uočeno je prisustvo niskougaonih granica (ugao je 2,08°). Potvrđeno je da svi dopirani uzorci pokazuju provodljivost n-tipa, sa linearnom *I–U* zavisnošću na temperaturama do 150 °C. Uzorak BaSn_{0,92}Sb_{0,08}O₃ je pokazao najveću provodljivost, koja se može pripisati prisustvu niskougaonih granica zrna koje omogućavaju lakši prenos nosilaca naelektrisanja i povećavaju njihovu pokretljivost.

[1] Y. Furushima, A. Nakamura, E. Tochigi, Y. Ikuhara, K. Toyoura, K. Matsunaga, J. Appl. Phys., **120** (2016) 1421071–1421079.

STRUCTURAL, MICROSTRUCTURAL AND ELECTRICAL PROPERTIES OF Sb-DOPED BaSnO₃ CERAMICS

<u>J. Vukašinović</u> ^a, M. Počuča-Nešić ^a, D. Luković Golić ^a, V. Ribić ^a, Z. Branković ^a, A. Dapčević ^b, S. Bernik ^c, G. Branković ^a

^a Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; ^b Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia; ^c Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

e-mail: jelena.vukasinovic@imsi.bg.ac.rs

BaSnO₃ (BSO) belongs to the perovskite-type oxides with a cubic crystal structure. It exhibits interesting electrical, optical and photocatalytic properties. BSO has a potential application as transparent conductor, gas sensor, photocatalyst or dielectric capacitor. It is an insulating material with wide band gap ($E_g = 3.1-3.4 \text{ eV}$), but its electrical properties can be adjusted by doping with aliovalent cations.

In this work, we investigated the influence of antimony (Sb^{3+}) , as a dopant, on crystal structure, microstructural and electrical properties of BSO ceramics. Stoichiometric mixture of powders BaCO₃, SnO₂ and Sb₂O₃ was mechanochemically activated in a planetary ball mill and afterwards calcined at 900 °C for 4 h. As-prepared powders were sintered by spark plasma sintering technique (1200 °C for 5 min) in order to produce ceramic samples BaSn_{1-x}Sb_xO₃ (x = 0.00, 0.04, 0.06, 0.08 and 0.10). All samples were characterized using X-ray Diffraction (XRD) analysis, High Resolution Transmission (HRTEM) and Field Emission Electron Microscopy (FESEM). Electrical conductivity of BaSn_{1-x}Sb_xO₃ ceramics was determined by measuring of the current-voltage (*I–U*) characteristics in different mediums and at different temperatures.

XRD analysis confirmed the existence of cubic BSO, as a dominant phase, and tetragonal Ba_2SnO_4 , as a secondary phase. FESEM analysis revealed homogenous microstructure in all samples and noticeable decrease of the grain size in doped samples compared to BSO. HRTEM micrographs of the undoped sample showed less ordered microstructure with amorphous phase in the grain boundary region. Doped samples revealed much higher crystallinity, especially in the grain boundary regions without presence of defects. Low angle grain boundaries (LAGB) are observed (the angle equals 2.08°) on the HRTEM micrographs of $BaSn_{0.92}Sb_{0.08}O_3$. It was observed that all doped samples are n-type semiconductors, having linear *I*–*U* characteristics up to 150 °C. Sample $BaSn_{0.92}Sb_{0.08}O_3$ showed the highest conductivity, most likely due to the presence of the LAGB, which allow easier charge carrier transfer between grains and greater carrier mobility [1].

[1] Y. Furushima, A. Nakamura, E. Tochigi, Y. Ikuhara, K. Toyoura, K. Matsunaga, J. Appl. Phys., **120** (2016) 1421071–1421079.

МИКРОСТРУКТУРНА АНАЛИЗА КУБООКТАЕДАРСКИХ НАНОЧЕСТИЦА Zn_{0,13}Fe_{2,87}O₄

<u>Н. Јовић Орсини</u>^а, А. Кременовић^b, М. М. Милић^a

^а Институт за нуклеарне науке "ВИНЧА", Мике Петровића Аласа 12-14, 11351 Винча, Београд, Србија; ^b Универзитет у Београду, Рударско-геолошки факултет, Ђушина 7, 11000 Београд, Србија e-mail: natasaj@vin.bg.ac.rs

Цинком супституисане наночестице магнетита, $Zn_xFe_{3-x}O_4$, кубног облика, величине око 19 nm и степена супституције х $\approx 0,4$, имају високу ефикасност у трансформацији енергије променљивог магнетног поља у топлоту када су компонента ферофлуида [1]. Ова њихова карактеристика им омогућава примену у различитим гранама биомедицине, углавном као "магнетно семе" у хипертермијском третману оболелих ћелија и ткива, или као контрастно средство у новој дијагностичкој техници - магнетском снимању честица [2]. Постојећа литература указује на супериорност кубних над сферним, као и Zn-супституисаних у односу на чисте наночестице магнетита, Fe₃O₄. Осим величине кристалита, облика и хемијског састава, степен кристалиничности наночестица веома је важан фактор који утиче на њихове биомедицинске перформансе.

Циљ овог истраживања је био да се процени/е:

1. да ли уградња Zn-joна у кристалну структуру спинела зависи од врсте прекурсора (соли хлорида, односно ацетил-ацетоната), када се примени метода термичке разградње.

2. структурни и микроструктурни параметри у кубооктаедарским Zn_{0,13}Fe_{2,87}O₄ наночестицама на основу анализе XRPD података помоћу програма *Fullprof*, примењујући различите моделе за ширење рефлексија услед коначне величине кристалита и напрезања.

[1] Z. Nemati, J. Alonso, L.M. Martinez, H. Khurshid, E. Garaio, J.A. Garcia, M.H. Phan, H. Srikanth, J. Phys. Chem. C, **120** (2016) 8370–8379.

[2] A.G. Kolhatkar, Y.-T. Chen, P. Chinwangso, I. Nekrashevich, G.C. Dannangoda, A. Singh, A.C. Jamison, O. Zenasni, I.A. Rusakova, K.S. Martirosyan, D. Litvinov, S. Xu, R.C. Willson, T. Randall Lee, *ACS Omega*, **2** (2017) 8010–8019.

[3] A. Lak, M. Cassani, B.T. Mai, N. Winckelmans, D. Cabrera, E. Sadrollahi, S. Marras, H. Remmer, S. Fiorito, L. Cremades-Jimeno, F. Jochen Litterst, F. Ludwig, L. Manna, F.J. Teran, S. Bals, T. Pellegrino, *Nano Lett.*, **18** (2018) 6856–6866.

MICROSTRUCTURAL ANALYSIS OF Zn_{0.13}Fe_{2.87}O₄ CUBOCTAHEDRAL NANOPARTICLES

N. Jović Orsini^a, A. Kremenović^b, M. M. Milić^a

^a Institute of Nuclear Sciences "VINČA", Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia; ^b University of Belgrade, Faculty of Mining and Geology, Đušina 7, 11000 Belgrade, Serbia e-mail: natasaj@vin.bg.ac.rs

Zinc substituted magnetite nanocubes, $Zn_xFe_{3-x}O_4$, with the size around 19 nm and the substitution $x \approx 0.4$, have high efficiency in transforming the energy of oscillating magnetic field into heat, when they are component of ferrofluids [1]. This feature of theirs gives them high potential to be used in a variety of biomedical applications, mostly as magnetic seeds in the magnetic fluid hyperthermia treatment of ill tissues and cells or as a contrast agent in the magnetic particle imaging – a new, high spatial resolution technique [2]. Superiority of cubic over spherical, as well as Zn-substituted over pure magnetite (Fe₃O₄) nanoparticles have been revealed in the literature [2]. Apart from the crystallite size, shape and chemical composition, the degree of the nanoparticles crystallinity is very important factor which influences their biomedical performances [3].

The aims of this study were to evaluate:

1. if the incorporation of Zn ion into the spinel crystal structure depends on the kind of precursors (chloride vs. acetylacethonate salts), when the thermal decomposition synthesis method is applied.

2. the structural and microstructural parameters of thus obtained $Zn_{0.13}Fe_{2.87}O_4$ cubooctahedral nanoparticles from refinement of the XRPD data using *Fullprof* program and different models for the size and strain broadening.

[1] Z. Nemati, J. Alonso, L.M. Martinez, H. Khurshid, E. Garaio, J.A. Garcia, M.H.

Phan, H. Srikanth, J. Phys. Chem. C, 120 (2016) 8370-8379.

[2] A.G. Kolhatkar, Y.-T. Chen, P. Chinwangso, I. Nekrashevich, G.C. Dannangoda, A. Singh, A.C. Jamison, O. Zenasni, I.A. Rusakova, K.S. Martirosyan, D. Litvinov, S. Xu,

R.C. Willson, T. Randall Lee, ACS Omega, 2 (2017) 8010-8019.

[3] A. Lak, M. Cassani, B.T. Mai, N. Winckelmans, D. Cabrera, E. Sadrollahi, S. Marras, H. Remmer, S. Fiorito, L. Cremades-Jimeno, F. Jochen Litterst, F. Ludwig, L. Manna, F.J. Teran, S. Bals, T. Pellegrino, *Nano Lett.*, **18** (2018) 6856–6866.

УТИЦАЈ Fe³⁺ КАТЈОНА НА МЕХАНИЗАМ ФОРМИРАЊА И ВЕЛИЧИНУ КРИСТАЛИТА с-СиFe₂O₄ НАНОЧЕСТИЦА

<u>В. Н. Николић</u>^а, М. М. Васић⁶, Д. Кисић^ц

^а Лабораторија за Теоријску Физику и Физику Кондензоване Материје, Институт за нуклеарне науке "Винча", Универзитет у Београду, Београд, Србија; ⁶ Факултет за Физичку хемију, Универзитет у Београду, Студентски Трг 12-16, Београд, Србија; ^и Лабораторија за Атомску Физику, Институт за нуклеарне науке "Винча", Универзитет у Београду, Београд, Србија e-mail: violeta@vinca.rs

СиFe₂O₄ фаза представља предмет научног испитивања због потенцијалне примене у различитим областима истраживања (достава лекова, магнетни медији за чување података, фотокатализа, хетерогена катализа). У овој студији, два нанокомпозитна узорка који садрже с-CuFe₂O₄ фазу су синтетисана методом копреципитације, коришћењем Cu²⁺ и Fe³⁺ прекурсора у милимоларном односу 1:3 и 3,1:3. Жарење на 1100 °C је омогућило формирање различитих нанокомпозита (с-CuFe₂O₄-CuO-α-Fe₂O₃ и с-CuFe₂O₄-CuO, респективно). За испитивање структуре и магнетног понашања припремљених узорака коришћене су технике дифракције Х-зрака (XRD) и електронска парамагнетна резонанца (EPR). XRD анализа је открила да нежарени узорци садрже CuO и дволинијски ферихидрит (2L-Fhyd), док узорци нанокомпозита садрже CuFe₂O₄ наночестице окарактерисане истом величином кристалита. EPR мерења су указала на чињеницу да узорци показују различито магнетно понашање.

Важно је приметити да је расподела катјона гвожђа различита у испитиваним узорцима; у једном случају, иста количина Fe³⁺ катјона је распоређена између α -Fe₂O₃ и с-CuFe₂O₄ фазе, док је у другом случају потпуно уграђена у с-CuFe₂O₄ фазу. Опажена појава је објашњена у контексту псеудо Јан-Телеровог ефекта CuO фазе присутне у нежареним узорцима. Како је процедура синтезе подразумевала промену концентрације Cu²⁺ прекурсора док се количина прекурсора гвожђа није мењала, иста величина кристалита с-CuFe₂O₄ фазе у оба узорка указује на чињеницу да концентрација Fe³⁺ прекурсора има важнију улогу од концентрације Cu²⁺ прекурсора има важнију улогу од концентрације Cu²⁺ прекурсора у делу механизма формирања који одређује величину наночестица.

INFLUENCE OF THE Fe³⁺ CATION ON THE FORMATION MECHANISM AND CRYSTALLITE SIZE OF CuFe₂O₄ NANOPARTICLES

V. N. Nikolić^a, M. M. Vasić^b, D. Kisić^c

^a Department of theoretical and condensed matter physics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia; ^b Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia; ^c Laboratory of Atomic Physics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia e-mail: violeta@vinca.rs

CuFe₂O₄ phase has been a subject of the scientific research due to its potential various applications in different research areas (drug delivery, magnetic storage media, photocatalysis, heterogenous catalysis). In this study, two nanocomposite samples containing c-CuFe₂O₄ phase are prepared by coprecipitation, using Cu²⁺ and Fe³⁺ precursors in milimolar ratio 1:3 and 3.1:3. Annealing at 1100 °C enabled fomation of different nanocomposites (c-CuFe₂O₄-CuO- α -Fe₂O₃ and c-CuFe₂O₄-CuO, respectively). X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) measurements were employed to investigate structure and magnetic behavior of the prepared samples. XRD analysis revealed that native samples contained CuO and two line ferrihydrite (2L-Fhyd), while nanocomposite samples contained c-CuFe₂O₄ nanoparticles characterized by the same crystallite size. EPR measurements pointed to the fact that samples showed different magnetic behavior.

It is important to notice that distribution of the iron cations is differed in the examined samples; in one case, the same amount of Fe^{3+} cations is distributed between the α -Fe₂O₃ and c-CuFe₂O₄ phase, while in the other case, it is completely incorporated in c-CuFe₂O₄ phase. Observed feature is explained in term of pseudo Jahn-Teller effect of CuO phases presented in native samples. Since the synthesis procedure considered alteration of Cu²⁺ precursor concentration while the amount of iron precursor has not been changed, the same crystallite size of c-CuFe₂O₄ phase in both samples pointed to the fact that concentration of Fe³⁺ precursor has more important role, compared with the amount of Cu²⁺ precursor, in the part of formation mechanism that determines the size of copper ferrite nanoparticles.

KRISTALOGRAFSKA STUDIJA EFEKTA POLIMERIZACIJE OKSIANJONA HROMA I VOLFRAMA U VODI NA SORPCIJU NA MAGNETIČNOM MAKROPOROZNOM KOPOLIMERU

Lj. Suručić^{*a*}, A. Rakić^{*b*}, A. Nastasović^{*c*}, A. Onjia^{*d*}, A. Popović^{*e*}, G. Janjić^{*c*}

^a Medicinski Fakultet, Univerzitet u Banjoj Luci, Save Mrkalja 14, Banja Luka, Republika Srpska, Bosna i Hercegovina; ^bFakultet za Fizičku hemiju, Univerzitet u Beogradu, Studentski Trg 12-16, Beograd, Srbija; ^c NU Institut za Hemiju, Tehnologiju i Metalurgiju, Institut od nacionalnog značaja, Univerzitet u Beogradu, Njegoševa 12, Beograd, Srbija; ^d Tehnološkometalurški fakultet, Univerzitet u Beogradu, Karnegijeva 4, Beograd, Srbija; ^e Hemijski fakultet, Univerzitet u Beogradu, Studentski Trg 12-16, Beograd, Srbija e-mail: ljiljana.surucic@med.unibl.org

Magnetični makroporozni kopolimer glicidilmetakrilata (GMA) i etilenglikoldimetakrilata (EGDMA), sintetisan suspenzionom kopolimerizacijom *in situ* u prisustvu nanočestica magnetita (Fe₃O₄), obloženih 3-aminopropiltrimetoksisilanom (APTMS), naknadno je funkcionalizovan dietilentriaminom (10MAGSi-SGE60-deta), i korišćen kao sorbens oksianjona Cr(VI) i W(VI) u monokomponentnim vodenim rastvorima.

U model sistemima za procenu jačine vezivanja oksianjona Cr(VI) i W(VI), korišćena su 4 molekulska fragmenta, koja odgovaraju apsorpcionim centrima na ispitivanom kopolimeru (dve -deta i dve APTMS molekulske vrste). Pokazalo se da sva četiri aktivna centra grade jače interakcije sa oksianjonima W(VI) u odnosu na Cr(VI). Međutim, eksperimentalno određene vrednosti maksimalnih kapaciteta sorpcije na pH=5,9 za oksianjone Cr(VI) ($Q_{max}=9,81 \ \mu mol \cdot g^{-1}$) i W(VI) ($Q_{max}=4,11 \ \mu mol \cdot g^{-1}$) dale su drugačiji redosled. Razlog za takvo odstupanje je tendencija oksianjona elemenata VIB grupe (Cr, Mo i W), da u vodenom rastvoru polimerizuju, što je naročito izraženo u koncentrovanijim rastvorima, kao i kod metala sa većim atomskim brojem [1]. Kako bi se ispitala ova pojava u kristalnim strukturama, urađena je pretraga CSD baze. Rezultati pretrage su pokazali da su najzastupljenije strukture oksianjona Cr(VI) u obliku Cr₂O₇⁻²⁻ i CrO₄²⁻, dok su u slučaju W(VI) najzastupljenije strukture sa polioksianjonima (W₆O₁₉²⁻ i W₁₀O₃₂⁴⁻).

Vezivanje polioksivanadata više je favorizovano na površini sorbensa u odnosu na hromate, zbog veće kontakte površine i većeg negativnog naelektrisanja. Međutim, vezivanje unutar pora kopolimera

određeno je unutarčestičnom difuzijom, koja je dosta otežana ili onemogućena voluminoznijim polioksivanadatnim jonima u odnosu na hromatne jone, koji su manje voluminozni a pokretljiviji. Iz toga proističe da difuzija oksianjona unutar pora ima značajan uticaj na proces sorpcije u datim uslovima.

[1] H. Hur, R.J. Reeder, J. Colloid Interface Sci., 461 (2016) 249-260.

CRYSTALLOGRAPHIC STUDY OF Cr AND W POLYMERISATION EFFECTS ON SORPTION BY MAGNETIC MACROPOROUS COPOLYMER IN AQUA SOLUTION

Lj. Suručić^a, A. Rakić^b, A. Nastasović^c, A. Onjia^d, A. Popović^e, G. Janjić^c

^a Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, Banja Luka, Republic of Srpska, Bosnia and Herzegovina; ^b Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia; ^c Scientific Institution Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Njegoševa 12, Belgrade, Serbia; ^dFaculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia; ^e Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia

e-mail: ljiljana.surucic@med.unibl.org

Magnetic macroporous copolymer of glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA) was synthesized by suspension copolymerization *in situ* in the presence of magnetic nanoparticles (Fe₃O₄), coated with 3-aminopropyltrimethoxysilane (APTMS), *additionally* functionalized with diethylenetriamine (10MAGSi-SGE60-*deta*), and was tested as sorbent of Cr(VI) and W(VI) oxyanions in *monocomponent* aqua *solution*.

Binding strengths of Cr(VI) and W(VI) oxyanions were tested in model systems which used 4 molecular fragments that correspond to the sorption centers on the copolymer (two deta and two APTMS molecular species). It has been shown that all four active centers build stronger interactions with W(VI) oxyanions compared to Cr(VI). However, the experimentally determined values for the maximum sorption capacity at pH = 5.9 for Cr(VI) ($Q_{max} = 9.81 \ \mu mol \cdot g^{-1}$) and W(VI) ($Q_{max} = 4.11 \ \mu mol \cdot g^{-1}$) oxyanions showed different order. The reason for this deviation is tendency of the VIB group (Cr, Mo and W) metals to polymerize in the aqueous solution, which is more pronounced in concentrated solutions, as well as for metals with a higher atomic number in group [1]. In order to examine this phenomena in crystalline structures, CSD database was searched. It was showed that the most represented Cr(VI) oxyanions structures are in the form of Cr₂O₇²⁻ and CrO₄²⁻, while in the case of W(VI) the most abundant structures with polyoxoanions (W₆O₁₉²⁻ and W₁₀O₃₂⁴⁻).

The binding of polyoxovanadate is more favored on surface of sorbents compared to chromates, due to their greater surface contact and more negative charge. However, the bonding

within the pores of the copolymer is determined by interparticulare diffusion, which is rather difficult or disrupted by voluminous ions of polyoxovanadate in relation to chromate ions, which are smaller and more mobile. It is therefore considered that the *diffusion* of oxyanions through the *pores* has a significant effect on the sorption process. [1] H. Hur, R. J. Reeder, *J. Colloid Interface Sci.*, **461** (2016) 249–260.

MODEL SISTEMI ZA DOPIRANJE AZOTOVIH ATOMA U STRUKTURE KARBONSKIH MATERIJALA, PREUZETIH IZ KRISTALNIH STRUKTURA

A. A. Rakić^a, I. Đorđević^b, G. B. Janjić^b

^a Fakultet za Fizičku hemiju, Univerzitet u Beogradu, Studentski Trg 12-16, Beograd, Srbija; ^b NU Institut za Hemiju, Tehnologiju i Metalurgiju, Institut od nacionalnog značaja, Univerzitet u Beogradu, Njegoševa 12, Beograd, Srbija e-mail: saska@ffh.bg.ac.rs

Za reaktivnost karbonizovanih nanomaterijala polianilina (PANI) veoma važnu ulogu ima prisustvo strukturno inkorporiranih azotovih atoma. Tokom karbonizacije PANI obično zadržava svoju polaznu morfologiju u čijoj su osnovi pločice, štapići/vlakna i sferni oblici.

Prilikom pretrage Kembričke baze kristalografskih podataka (CSD) pronađene su ravne ugljenične strukture od kondenzovanih šestočlanih aromatičnih prstenova, zatim sferni fulareni (oblik lopte i jajeta) i fulareni nalik štapićima, odnosno kapsuli (slika). Supstituenti mogu značajno deformisati karbonske materijale, pa stoga takve strukture nisu razmatrane u ovom radu. Od ukupno 135 struktura najzastupljeniji fularen oblika lopte izgrađen je od 60 C atoma (108 struktura), a samo jedna struktura ima oblik kapsule.

Na osnovu već poznatih modela dopiranja, [1] modifikovane su CSD strukture grafenske ploče (DOKQIF) i fularen u obliku kapsule (RONVEX). Semiempirijska AM1 metoda je korišćena za optimizaciju ovih struktura, a u cilju određivanja energetski najpovoljnijeg načina dopiranja. Ispitivana je i zavisnost energetski najpovoljnijeg načina dopiranja od veličine i oblika početne srukture. Izračunate energije interakcija između najstabilnije dopiranih karbonskih struktura i Pb(II) jona poslužile su za razumevanje načina adsorpcije ovog jona na površini pojedinih morfoloških oblika.

Zahvalnica

Rad je podržan od Ministarstva prosvete, nauke i tehnološkog razvoja Republike Srbije (broj projekta OI 172043).

[1] X.F. Li, K.Y. Lian, L. Liu, Y. Wu, Q. Qiu, J. Jiang, M. Deng, Y. Luo, *Sci. Rep*, **6** (2016) 1–10.

MODEL SYSTEMS FOR NITROGEN DOPED CARBON MATERIALS EXTRACTED FROM CRYSTAL STRUCTURES

<u>A. A. Rakić</u>^a, I. Đorđević^b, G. B. Janjić^b

^a Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia; ^b Scientific Institution Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Njegoševa 12, Belgrade, Serbia e-mail: saska@ffh.bg.ac.rs

The reactivity of carbonized polyaniline (PANI) nanomaterials significantly depends on the presence of structurally incorporated nitrogen atoms. The nanomorphology of PANI, basically composed of plate-, stick-/fiber- and spheric-like shapes, usually remains preserved upon the carbonisation.

The search of Cambridge Structural Database (CSD) led us to the carbone structures of condensated sixfold aromatic rings, spheric fullerenes (ball- and egg-like shapes) and fullerenes in the shape of sticks, i.e. a capsule (Figure). Overall, 135 structures were extracted. Since substituents could significantly deform carbon materials, those structures were not considered in this study. The ball-shaped fullerenes with 60 C atoms are the most abundant (108 structures), while there is just one capsule-shaped fullerene structure.

The CSD structures of graphene's plate (DOKQIF) and fullerene's capsule (RONVEX) were nitrogen doped according to the models in the literature [1]. Semiempirical AM1 method was used for the optimization of these structures, in order to determine the most energetically favourable doping mode and its dependence on the size and shape of the original structure. Calculated interaction energies between Pb(II) ion and the most stable nitrogen doped structures were used to determine the adsorption modes of Pb(II) ion.

Acknowledgement

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant number OI 172043).

[1] X. F. Li, K. Y. Lian, L. Liu, Y. Wu, Q. Qiu, J. Jiang, M. Deng, Y. Luo, *Sci. Rep*, 6 (2016) 1–10.

ANALIZA DISTRIBUCIJE OKSOANJONSKIH VRSTA MOLIBDENA I RENIJUMA U KRISTALOGRAFSKOJ BAZI PODATAKA I VODENOM RASTVORU

G. Janjić^a, I. Đorđević^a, B. Marković^a, A. Nastasović^a

^a NU Institut za Hemiju, Tehnologiju i Metalurgiju, Institut od nacionalnog značaja, Univerzitet u Beogradu, Njegoševa 12, Beograd, Srbija e-mail: janjic goran@chem.bg.ac.rs

Visoke koncentracije molibdena i renijuma mogu izazvati ozbiljne zdravstvene probleme i zagađenje životne sredine, stoga su neophodne efikasne tehnologije separacije i sanacije. Amino-funkcionalizovani poli(glicidil metakrilat-*ko*-etilen glikol dimetakrilat) (PGME) je već istaknut kao efikasan sorbent za uklanjanje teških metala iz vodenih rastvora [1]. Na osnovu naših prethodnih rezultata [2], PGME funkcionalizovan dietilen-triaminom (PGME-deta), upotrebljen je kao sorbent za uklanjanje oksoanjonskih vrsta Mo(VI) iz vodenih rastvora.

Kapacitet sorpcije deta-funkcionalizovanog kopolimera opada sa porastom pH vrednosti, a promena je u korelaciji sa distribucijom protonovanih vrsta dietilentriamina u rastvoru. Naime, sa povećanjem pH vrednosti rastvora, smanjuje se pozitivno naelektrisanje dominantne deta vrste. Kako se sorpcija zasniva na elektrostatičkim interakcijama oksoanjona sa protonovanim deta fragmentima kopolimera, smanjenje sorpcije je posledica ovog smanjenja pozitivnog naelektrisanja. DFT proračuni pokazali su da se MOQ_4^{2-} jon jače vezuje od ReO_4^{-} jona. Međutim, poznato je da Mo ima osobinu da gradi poli-okso jedinjenja, koja je izraženija sa povećanjem koncentracije Mo i pH rastvora. Rezultati pretrage Kembričke baze strukturnih podataka (CSD) pokazali su veliku raznolikost oksoanjonskih vrsta Mo(VI), ali i postojanje samo dve oksoanjonske vrste Re(VII). Najzastupljenije vrste su prikazane na slici.

Mogućnost Mo(VI) da gradi poli-okso jedinjenja razlog je drastičnog smanjenja sorpcije Mo(VI), u odnosu na sorpciju Re(VII), na pH > 4. Razlog za to je voluminoznost poli-okso vrsta, koja otežava penetraciju oksoanjona u strukturu kopolimera.

M.J.S. Yabea, E. de Oliveirab, *Adv. Environ. Res.*, 7 (2003) 263–272.
 B.M. Ekmeščić, D.D. Maksin, J.P. Marković, Z.M. Vuković, R.V. Hercigonja, A.B. Nastasović, A.E. Onjia, *Arab. J. Chem.*, doi.org/10.1016/j.arabjc.2015.11.010.

ANALYSIS OF DISTRIBUTION OXOANIONIC MOLYBDENUM AND RHENIUM SPECIES IN CRYSTALLOGRAPHIC DATABASE AND AQUEUOS SOLUTION

G. Janjić^a, I. Đorđević^a, B. Marković^a, A. Nastasović^a

^aScientific Institution Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Njegoševa 12, Belgrade, Serbia e-mail: janjic goran@chem.bg.ac.rs

High molybdenum and rhenium levels can cause serious health problems and environmental contamination, so an efficient separation and remediation technologies are necessary. Amino-functionalized poly(glycidyl methacrylate-*co*-ethylene glycol dimethacrylate) (PGME) has already been highlighted as an efficient sorbent for removal of heavy metals from aqueous solutions [1]. Based on our previous results [2], PGME functionalized with diethylenetriamine (PGME-deta) was used as sorbent for removal Mo(VI) oxoanionic species from aqueous solutions.

Adsorption capacity of the deta-functionalized copolymer decreases with increasing pH, and the change is in correlation with the distribution of protonated deta species in the solution. The positive charge of the dominant deta species decreases with the increasing of pH values. As the sorption is based on electrostatic interactions of oxoanions with protonated deta fragments of copolymer, the reduction of sorption is a consequence of this decrease in positive charge. DFT calculations have shown that MOQ_4^{2-} ion is stronger bonded than ReO^{4-} ion. However, it is known that oxo-Mo species have the property to build poly-oxo compounds, which is more pronounced with increases of Mo concentration and pH value of solution. The results of Cambridge Structural Database (CSD) search have shown a great diversity of Mo(VI) oxoanionic species and only two oxoanionic species of Re(VII). The most abundant types are shown in the Figure.

The ability of Mo(VI) to build a poly-oxo compounds is the reason of a drastic reduction of Mo(VII) sorption, compared to sorption of Re(VII), at pH > 4. The possible reason for this is voluminousity of poly-oxo species, making the oxoanion penetration into the structure of the copolymer more difficult.

M.J.S. Yabea, E. de Oliveirab, Adv. Environ. Res., 7 (2003) 263–272.
 B.M. Ekmeščić, D.D. Maksin, J.P. Marković, Z.M. Vuković, R.V. Hercigonja, A.B. Nastasović, A.E. Onjia, Arab. J. Chem., doi.org/10.1016/j.arabjc.2015.11.010.

УТИЦАЈ СУПСТИТУЕНАТА НА ИНТЕРАКЦИЈЕ У ФОСФИНО–БОРАНСКИМ ПАРОВИМА

М. Р. Миловановић^a, J. М. Андрић^a, <u>В. Б. Медаковић</u>^b, J.-P. Djukic^c, С. Д. Зарић^{b,d}

^а Иновациони центар, Хемијски факултет, Студентски трг 12-16, Београд, Србија; ^b Хемијски факултет, Универзитет у Београду, Студентски трг, 12-16, Београд, Србија; ^c Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg, 67000, France; ^d Texas A&M University at Qatar, Education City, PO Box 23874, Doha, Qatar e-mail: vesnam@chem.bg.ac.rs

Фосфино-борански парови, посебно "фрустрирани", имају широку примену у различитим доменима: од синтезе и катализе до складиштења водоника и материјала [1]. У овом раду је проучаван утицај супституената на интеракције између фосфина и борана на основу анализе свих доступних кристалних структура архивираних у Кембричкој бази структурних података (енг. Cambridge Structural Database (CSD)) [2].

Контакти су класификовани према величини и природи супституената на атому бора, што је омогућило анализу утицаја различитих типова супституената атома бора на геометрију пара фосфин-боран, укључујући класичне и фрустриране Луисове (Lewis) парове (FLP), у кристалним структурама. Разматране су три групе структура: BH_3 -P(Y₁Y₂Y₃) сет који садржи BH₃ као молекул борана; $B(X_1X_2X_3)$ -P(Y₁Y₂Y₃) сет који садржи све остале молекуле борана, и сет фрустрираних Луисових фосфино-боранских парова. Резултати показују да присуство ароматичних супституената на атому бора има мали утицај, док присуство моста (ланац атома између фосфора и бора) има значајан утицај на геометрију интеракција између фосфина и борана у кристалима. Добијени резултати омогућили су и поређење геометријских параметара класичних и фрустрираних Луисових парова.

FLP структура са С2-мостом

Захвалница: Овај рад је подржан од стране Министарства просвете, науке и технолошког развоја Републике Србије [пројекат бр. 172065]. [1] D.W. Stephan, G. Erker, *Angew. Chem. Int. Ed.*, **54** (2015) 6400–6441. [2] M.R. Milovanović, J.M. Andrić, V.B. Medaković, J-P. Djukić, S.D. Zarić, *Acta Crystallogr.*, **B74** (2018) 255–263.

THE INFLUENCE OF THE SUBSTITUENTS ON THE INTERACTIONS IN PHOSPHINE–BORANE PAIRS

M. R. Milovanović^a, J. M. Andrić^a, <u>V. B. Medaković^b</u>, J.-P. Djukic^c, S. D. Zarić^{b,d}

^a Innovation center, Department of Chemistry, Studentski trg 12-16, Belgrade, Serbia; ^b Department of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia; ^c Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg, 67000, France; ^d Texas A&M University at Qatar, Education City, PO Box 23874, Doha, Qatar e-mail: vesnam@chem.bg.ac.rs

The phosphine–borane pairs, especially frustrated ones, have found great use in different domains: from synthesis and catalysis to hydrogen storage and materials [1]. Herein we studied the influence of the substituents on the phosphine–borane interactions based on the analysis of all available crystal structures archived in the Cambridge Structural Database (CSD) [2].

The contacts have been classified according to the size and the nature of the substituents on the boron atom, which enabled analysis of the influence of the different types of boron atom substituents on the geometry of phosphine–borane pairs, including classical and frustrated Lewis pairs (FLPs), in the crystal structures. Three sets of structures were considered: the BH₃–P(Y₁Y₂Y₃) set containing BH₃ as the borane molecule; the B(X₁X₂X₃)–P(Y₁Y₂Y₃) set with all other borane molecules, and the frustrated Lewis (phosphine–borane) pairs set. The results show that the presence of a ormatic substituents on the boron atom has a small influence, whereas the presence of a bridge (an atomic chain between phosphorus and boron centres) has a more significant influence on the geometries of phosphine–borane interactions in crystals. The obtained data also enabled a comparison of the geometrical parameters of the classical and frustrated Lewis pairs.

Acknowledgements: This work was supported by the Serbian Ministry of Education, Science and Technological Development [grant number 172065].

D.W. Stephan, G. Erker, Angew. Chem. Int. Ed., 54 (2015) 6400–6441.
 M.R. Milovanović, J.M. Andrić, V.B. Medaković, J-P. Djukić, S.D. Zarić, Acta Crystallogr., B74 (2018) 255–263.

ПОРЕЂЕЊЕ ЕНЕРГИЈА Х-Н/Рt ИНТЕРАКЦИЈА ИЗМЕЂУ МОЛЕКУЛА ЦИС- И ТРАНС-ПЛАТИНЕ И РАЗЛИЧИТИХ ДОНОРА ВОДОНИКА

<u>Д. Ж. Вељковић</u>^а, А. Б. Ђуновић^а, С. Д. Зарић^{а, б}

^{*a Хемијски факултет, Универзитет у Београду, Студентски трг 12-16, Београд, Србија; ^б Department of Chemistry, Texas A & M University at Qatar P.O. Box 23874 Doha, Qatar*}

e-mail: vdusan@chem.bg.ac.rs

X-H/М интеракције представљају посебан тип нековалентних интеракција у којима се метал понаша као акцептор атома водоника [1]. Први докази постојања овог типа заснивали су се на експериментима и квантнохемијским прорачунима који су укључивали координациона једињења платине [1–3]. У наредним деценијама, X-H/Pt интеракције су детаљно проучаване како помоћу експерименталних, тако и помоћу рачунарских метода [1–5].

У овом раду су проучаване енергије и геометрије Х-H/Pt интеракција између молекула цис- и транс-платине као акцептора водоника и молекула CH₄, NH₃ и H₂O као донора водоника. Енергије интеракција су израчунате коришћењем MP2/augcc-PVDZ нивоа теорије. Кембрчка база података је претражена на све структуре које садрже молекуле цис- и транс-платине који учествују у Х-H/Pt интеракцијама. Растојање водоник...платина статистички је анализирано и резултати анализе су упоређени са резултатима квантнохемијских прорачуна.

Резултати су показали да је најјача X-H/Pt интеракција молекула цисплатине значајно снажнија од најјаче интеракције молекула трансплатине ($E_{OH/cis-Pt} = -5.97$ kcal/mol и $E_{OH/rans-Pt} = -4.43$ kcal/mol).

Мапе електростатичког потенцијала за молекуле цис- и транс-платине

[1] E.R.T. Tiekink, Coord. Chem. Rev., 345 (2017) 209-228.

[2] J. Kozelka, J. Berges, R. Attias, J. Fraitag, Angew. Chem., 112 (2000) Nr. 1.

[3] S. Rizzato, J. Berges, S.A. Mason, A. Albinati, J. Kozelka, *Angew. Chem. Int. Ed.*, **49** (2010) 7440–7443.

[4] O. Kroutil, M. Předota, Z. Chval, Inorg. Chem., 55 (2016) 3252-3264.

[5] G.V. Janjić, M.D. Milosavljević, D.Ž. Veljković, S.D. Zarić, *Phys. Chem. Chem. Phys.* **19** (2017) 19, 8657–8660.

COMPARISON OF ENERGIES OF X–H/Pt INTERACTIONS BETWEEN CIS- AND TRANSPLATIN MOLECULES AND DIFFERENT HYDROGEN ATOM DONORS

D. Ž. Veljković^a, A. B. Đunović^a, S. D. Zarić^{a,b}

^a Department of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia; ^b Department of Chemistry, Texas A & M University at Qatar P.O. Box 23874, Doha, Qatar

e-mail: vdusan@chem.bg.ac.rs

X–H/M interactions represent special type of noncovalent interactions in which metal atoms act as hydrogen atom acceptors [1]. First evidence of existence of this type of interactions was based on experiments and quantum chemical calculations involving coordination compounds of platinum [1–3]. In the following decades, X–H/Pt interactions were extensively studied by both experimental and computational methods [1–5].

In this paper, energies and geometries of X–H/Pt interactions involving cis- and transplatin molecules as hydrogen atom acceptors and CH₄, NH₃ and H₂O molecules as hydrogen atom donors were studied. Interaction energies were calculated using MP2/aug-cc-PVDZ level of theory. Cambridge Structural Database was searched for all structures containing cis- and transplatin molecules involved in X–H/Pt interactions. Hydrogen...platinum distances in these structures were statitically analyzed and the results of this analysis were compared with the results of quantum chemical calculations.

Results showed that the strongest X–H/Pt interactions involving cisplatin molecule are significantly stronger in comparison to the strongest interactions involving transplatin molecule ($E_{OH/cis-Pt} = -5.97$ kcal/mol while $E_{OH/trans-Pt} = -4.43$ kcal/mol).

Electrostatic potentials for cis- and transplatin molecules calculated using WFA-SAS software

[1] E.R.T. Tiekink, Coord. Chem. Rev., 345 (2017) 209-228.

[2] J. Kozelka, J. Berges, R. Attias, J. Fraitag, Angew. Chem., 112 (2000) Nr. 1.

[3] S. Rizzato, J. Berges, S.A. Mason, A. Albinati, J. Kozelka, *Angew. Chem. Int. Ed.*, **49** (2010) 7440–7443.

[4] O. Kroutil, M. Předota, Z. Chval, Inorg. Chem., 55 (2016) 3252-3264.

[5] G.V. Janjić, M.D. Milosavljević, D.Ž. Veljković, S.D. Zarić, *Phys. Chem. Chem. Phys.* **19** (2017) 19, 8657–8660.

INTERAKCIJE DVE HEMIJSKE VEZE, FUNDAMENT KOJI NESTAJE U SUPRAMOLEKULSKOJ ARHITEKTURI

M. Sarvan^a, M. Petković Benazzouz^a, G. Janjić^b

^a Fizički fakultet, Univerziteta u Beogradu, Studentski trg 12-16, Beograd, Srbija; ^b NU Institut za Hemiju, Tehnologiju i Metalurgiju, Institut od nacionalnog značaja, Univerzitet u Beogradu, Njegoševa 12, Beograd, Srbija e-mail: miras@ff.bg.ac.rs

Iako interakcija dve hemijske veze spada u grupu interakcija koje nisu u skladu sa hemijskom intuicijom [1], ove interakcije pokazuju svoju široku zastupljenost u kristalnim strukturama, uprkos veoma strogim geometrijskim kriterijumima koji ih definišu. Interkcije dve hemijske veze predstavljaju sistem sa četiri centra, od kojih svaki predstavlja po jedan od četiri atoma interagujućih veza.

U ovom radu urađena je kristalografska studija zasnovana na podacima dobijenim iz Kembričke baze strukturnih podataka (CSD), kod koje je rastojanje između dva centra veze (AB i CD hemisjke veze) manje od 3,5 Å (*d* parametar, slika 1).

Slika 1. Model sistem sa paramerima koji definišu geometriju interakcija dve hemijske veze.

Slika 2. Geometrijska karakterizacija interakcija tipa jednostruka/dvostruka i jednostruka/trostruka u kristalnim strukturama: *d* rastojanje i torzioni ugao T.

Skoro sve strukture iz *CSD* baze (ukupno 717 876 struktura) sadrže najmanje jednu ovakvu interakciju. Bez obzira da li su interakcije tipa jednostruka/dvostruka (J/D) ili jednostruka/trostruka (J/T), sva *d* rastojanja su veća od 3,2 Å, sa maksimumom raspodele u opsegu od 3,4 Å do 3,5 Å (slika 2). Ukrštena orijentacija (T > 20°) je zastupljenija od paralelne, kod oba tipa kontakata.Ovi kontakti su nekoliko puta zastupljeniji od vodoničnih veza između dva molekula vode (25 277 kontakata), sa rastojanjem između kiseonikovih atoma manjem od 3,5 Å. Uzimajući u obzir broj međumolekulskih kontakata (12 197 kontakta za J/D tip i 9 288 kontakta u slučaju J/T tipa), jasno je da ove interakcije imaju značajnu ulogu u kristalnom pakovanju.

[1] S. K. Singh, A. Das, Phys. Chem. Chem. Phys., 17 (2015) 9596-9612.

BOND-BOND INTERACTIONS, THE MISSING FUNDAMENT OF SUPRAMOLECULAR ARCHITECTURE

M. Sarvan^a, M. Petković Benazzouz^a, G. Janjić^b

^a Faculty of Physics, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia; ^b Scientific Institution Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Njegoševa 12, Belgrade, Serbia e-mail: miras@ff.bg.ac.rs

Although the interaction of two bonds is counterintuitive in nature [1], bond/bond interactions have shown the widespread presence in crystal structures, despite very strict geometric criteria used to define them. These interactions present four centered system that includes each of four atoms from interacting bonds. Here, the crystallographic study is based on the structures archived in the Cambridge Structural Database (CSD) in which the distance between the centres of two contact bonds (AB and CD bonds) is less than 3.5 Å (*d* parameter, Figure 1).

Figure 1. The model system and geometrical parameters defining the geometry of two contact bonds.

Figure 2. Geometrical characterization of interactions between single/double and single/triple bond pairs in crystal structures: *d* distance and torsion angle T.

Almost all structures in the CSD (717 876 structures) contain at least one bond/bond contact. Regardless of whether the interactions are single/double or single/triple type, in most of contacts the distance *d* is larger than 3.2 Å with maximum of distribution in the range from 3.4 Å to 3.5 Å (Figure 2). Crossed orientation ($T > 20^\circ$) is more frequent than parallel, in both types of bond/bond contacts.

These contacts are several times more frequent than hydrogen bonds of water molecules (25 277 contacts), with the distance between oxygen atoms less than 3.5 Å. Taking into account the intramolecular bond/bond contacts (12 197 contacts of single/double type and 9 288 contacts of single/triple type) it is clear that these interactions have an important role in the crystal packing.

[1] S. K. Singh, A. Das, Phys. Chem. Chem. Phys., 17 (2015) 9596–9612.

EKSPERIMENTALNA I TEORIJSKA ANALIZA RASPODELE GUSTINE NAELEKTRISANJA U SYN-FACIJALNOM Cr, Mn-BENZIL KOMPLEKSU

S. B. Novaković^a, <u>A. Spasojević-de Biré^{b,c}</u>, J. P. Djukić^d,

^a Institut za nuklearne naukeVinča, Laboratorija za teorijsku fiziku i fiziku kondenzovan materije, PP 522, Univerzitet u Beogradu, 11001 Beograd, Srbija; ^b Université Paris-Saclay, CentraleSupélec, Campus de Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; ^c CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Campus de Gif, 8-10 rue Joliot-Curie,91190 Gif-sur-Yvette, France; ^d LCSOM, Institut de Chimie de Strasbourg UMR7177, Université de Strasbourg, 4 rue Blaise Pascal F-67000 Strasbourg

e-mail:anne.spasojevic@centralesupelec.fr

Raspodela gustine naelektrisanja u elektron-deficitarnom syn-facijalnom Cr, Mnbenzil kompleksu [1] ispitana je kombinacijom eksperimentalnih i teorijskih metoda. Gustina naelektrisanja eksperimentalno je određena na osnovu podataka dobijenih difrakcijom rendgenskog zračenja visoke rezolucije na sinhrotronu i primenom multipolformalizma [2]. DFT proračuni su sprovedeni na kristalnom sistemu u eksperimentalnoj geometriji, primenom programa Crystal09 [3], i na izolovanom molekulu primenom programa AIMAll [4]. Svi modeli elektronske gustine ispitani su primenom Kvantne teorije "Atomi u molekulu" [5] sa ciljem procene faktora značajnih za stabilizaciju elektron-deficitarnog kompleksa. Direktna interakcija između atoma metala kao i interakcija između atoma metala i organskog liganda ispitana je topološkom analizom ukupne elektronske gustine. Eksperimentalni model i teorijski modeli raspodele gustine naelektrisanja pokazuju slična svojstva. Pored odsustva topološke kritične tačke veze, oblast između atoma metala karakteriše mala količina elektronske gustine (0,12 e.Å⁻³), dok atomi oba metala prema rezultatima "funkcije izvora" (eng. source fuction) povlače elektronsku gustinu iz međuatomske oblasti. Integrisana funkcija izvora ispitana u različitim referentnim tačkama između atoma metala i organskog liganda pokazuje doprinos u elektronskoj gustini gotovo svih atoma u sistemu ukazujući na veoma delokalizovanu metal-ligand interakciju.

[1] J.-P. Djukic, C. Michon, A. Berger, M. Pfeffer, A. Cian, N. Kyritsakas-Gruber, J. Organomet. Chem., 691 (2006) 846–858.

[2] N.K. Hansen, P. Coppens, Acta Crystallogr., A34 (1978) 909–921.

[3] R. Dovesi, V.R. Saunders, R. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. D'Arco, M. Llunell, CRYSTAL09. University of Torino: Torino, 2009.

[4] AIMAll, T.A. Keith, TK Gristmill Software, Overland Park KS, USA, 2019.

[5] R.F.W. Bader, Atoms in Molecules: A Quantum Theory. International Series of Monographs in Chemistry, Vol. 2; Oxford University Press: Oxford, 1990.

EXPERIMENTAL AND THEORETICAL CHARGE DENSITY STUDY OF AN ELECTRON SYN-FACIAL Cr, Mn BENZYL COMPLEX

S. B. Novaković^a, <u>A. Spasojević-de Biré^{b,c}</u>, J. P. Djukić^d,

^a Vinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia; ^b Université Paris-Saclay, CentraleSupélec, Campus de Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; ^c CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Campus de Gif, 8-10 rue Joliot-Curie,91190 Gif-sur-Yvette, France; ^d LCSOM, Institut de Chimie de Strasbourg UMR7177, Université de Strasbourg, 4 rueBlaisePascal F-67000 Strasbourg e-mail:anne.spasojevic@centralesupelec.fr

Combined experimental and theoretical charge density study has been performed on electron-deficient syn-facial Cr-Mn benzyl complex [1]. The charge density has been modelled experimentally by using the multipole formalism [2] against a high-resolution single-crystal X-ray diffraction data collected with a synchrotron source. DFT calculations have been performed on periodic system in the experimental geometry by using Crystal09 [3] and on the isolated molecule by using AIMAll [4]. All charge density models have been examined in terms of the Quantum Theory of Atoms in Molecules [5] with the aim to evaluate the factors stabilizing the electron-deficient Cr-Mn complex. The direct Cr...Mn interaction as well as the interaction between the metal atoms and alkylidene ligand have been examined by topological descriptors including the local and integrated source function. Experimental and theoretical charge density models show similar electronic features. Apart from the lack of the topological bond critical point, the region between the Cr and Mn atoms is characterized by low electron density (0.12 e.Å⁻³), where both metal atoms behave as deep sinks in terms of the source function. Integrated source function examined in different reference points located between the metal atoms and the alkylidene ligand shows the contribution in electron density from almost all atoms in the system suggesting a highly delocalized metal-ligand interaction.

[1] J.-P. Djukic, C. Michon, A. Berger, M. Pfeffer, A. Cian, N. Kyritsakas-Gruber, J. Organomet. Chem., 691 (2006) 846–858.

[2] N.K. Hansen, P. Coppens, Acta Crystallogr., A34 (1978) 909-921.

[3] R. Dovesi, V.R. Saunders, R. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. D'Arco, M. Llunell, CRYSTAL09. University of Torino: Torino, 2009.

[4] AIMAll, T.A. Keith, TK Gristmill Software, Overland Park KS, USA, 2019.

[5] R.F.W. Bader, Atoms in Molecules: A Quantum Theory. International Series of Monographs in Chemistry, Vol. 2; Oxford University Press: Oxford, 1990.

ХИДРАТАЦИЈА У КРИСТАЛНИМ СТРУКТУРАМА АМИЛОИДА

<u>И. М. Станковић</u>^а, С. Д. Зарић^б

^а ИХТМ, Универзитет у Београду, Његошева 12, Београд, Србија; ⁶ Универзитет у Београду - Хемијски факултет, , Студентски трг 12-16, Београд, Србија e-mail: szaric@chem.bg.ac.rs

За разлику од протеинских гелова чија су синтеза и контрола самоорганизације до жељене супрамолекулске структуре веома захтевни, хидрогелови амилоида су идеални за биоматеријале и нанотехнологију због своје мале величине и лаке синтезе [1]. Испитивали смо како хидратација утиче на енергију интеракција у кристалним структурама амилоида. Протеинска банка података [2] је претражена према методологији описаној у претходном раду [3]. Хидратација и енергија интеракције су проучавани у седам група полиморфа, односно структурама амилоида са истом секвенцом аминокиселина.

Енергије интеракција између једног пептидног ланца амилоида и његовог окружења за сваку групу полиморфа су процењене коришћењем поља сила СНАRMM [4]. Атоми водоника су додати рачунарски, и пре прорачуна енергије, енергија је минимизована молекулско-динамички тако што су сви водоници могли слободно да се крећу. Оригинална јединична ћелија за сваку структуру амилоида је транслирана у свим правцима и електростатичке интеракције су рачунате у бесконачној кристалној решетки помоћу методе Particle Mesh Ewald [5].

Хидратација сваког полиморфа је одређена дељењем броја контаката водапротеин са укупним бојем контаката. Контакт подразумева растојање између тешких атома од 4,0 Å. За анализу хидратације и енергије је написана скрипта у језику Python са коришћењем библиотеке MDAnalysis [6], а за прорачун енергије је коришћен програм NAMD [7].

Резултати указују на јачу интеракцију са порастом контаката са водом за неке полиморфне групе и обрнут случај за остале групе. Даља структурна анализа ће расветлити разлоге таквог понашања. У свим структурама, електростатичка енергија је јача од ван дер Валсове енергије, и електростатичка енергија прати криву укупне енергије.

- [1] R.S. Jacob et al., Biomaterials, 54 (2015) 97-105.
- [2] H.M. Berman et al., Nucleic Acids Res., 28(1) (2000) 235–242.
- [3] I. Stanković, M.B. Hall, S.D. Zarić, Trans. Internet Res., 13 (2017).
- [4] A.D. Mackerell Jr et al., J Phys Chem B, 102 (1998) 3586-3616.
- [5] T. Darden, D. York, L. Pedersen, J Chem Phys, 98 (1993) 10089-10092.
- [6] N. Michaud-Agrawal et al., Comput. Chem., 32 (2011) 2319-2327.
- [7] J.C. Philips et al., J Comput Chem, 26 (2005) 1781–1802.

HYDRATION IN AMYLOID CRYSTAL STRUCTURES

I. M. Stanković^a, S. D. Zarić^b

^{*a*} ICTM, University of Belgrade, Njegoševa 12, Belgrade, Serbia; ^{*b*} University of Belgrade - Faculty of Chemistry, Студентски трг 12-16, Belgrade, Serbia e-mail: szaric@chem.bg.ac.rs

Contrary to protein gels where synthesis, manipulation and control of the selfassembly for desired supramolecular formulation is very challenging, amyloid-based hydrogels are ideal for biomaterial and nanotechnology applications because of their small size and ease of custom synthesis [1]. We investigated how hydration influences energy of interactions in crystal amyloid structures. The Protein Data Bank [2] was searched for crystal amyloid structures according to the methodology in [3]. Hydration and interaction energy were analyzed in seven groups of polymorphous structures, ie. the amyloid structures with the same amino acid sequences.

The energy interactions between one amyloid polypeptide chain and its surroundings for each polymorph group were estimated with the CHARMM force field [4]. Hydrogen atoms were added computationally, and molecular dynamics energy minimization with the hydrogen atoms free to move was performed prior to energy calculations. The original unit cell for each amyloid structure was translated in all directions and Particle Mesh Ewald method [5] was used to account for the electrostatic interactions in the infinite crystal lattice.

The hydration of every polymorph was estimated by dividing the number of waterprotein contacts by total number of contacts. A contact is considered a 4.0 Å distance between heavy atoms. Python scripts with MDAnalysis library [6] were written for the hydration and interaction energy analyses, and NAMD software was used for energy calculations [7].

The results indicate stronger interaction energy with the increasing water contacts for some polymorph groups and the reversed case for the other polymorph groups. Further structural analysis will reveal the molecular bases of such a behaviour. In all the structures, electrostatic energy is stronger than van der Waals energy and it follows the trend of the total interaction energy.

- [1] R.S. Jacob et al., Biomaterials, 54 (2015) 97-105.
- [2] H.M. Berman et al., Nucleic Acids Res., 28(1) (2000) 235–242.
- [3] I. Stanković, M.B. Hall, S.D. Zarić, Trans. Internet Res., 13 (2017).
- [4] A.D. Mackerell Jr et al., J Phys Chem B, 102 (1998) 3586–3616.
- [5] T. Darden, D. York, L. Pedersen, J Chem Phys, 98 (1993) 10089-10092.
- [6] N. Michaud-Agrawal et al., Comput. Chem., 32 (2011) 2319-2327.
- [7] J.C. Philips et al., J Comput Chem, 26 (2005) 1781–1802.

СТЕКИНГ ИНТЕРАКЦИЈЕ С₆-АРОМАТИЧНИХ ПРСТЕНОВА И ШЕСТОЧЛАНИХ ПРСТЕНОВА ФОРМИРАНИХ ВОДОНИЧНОМ ВЕЗОМ ПОТПОМОГНУТОМ РЕЗОНАНЦИЈОМ

<u> J. П. Благојевић Филиповић</u>^а, С. Д. Зарић^{ь,с}

^а Иновациони центар Хемијског факултета, Студентски трг 12-16, Београд, Србија; ^b Хемијски факултет Универзитета у Београду, Студентски трг 12-16, Београд, Србија; ^c Хемијски факултет, Texas A&M Универзитет у Катару, P.O. Box 23874, Доха, Катар e-mail: szaric@chem.bg.ac.rs

У Кембричкој бази структурних података паралелни контакти чине 59,4% контаката између С₆-ароматичних прстенова и шесточланих прстенова формираних водоничном везом потпомогнутом резонанцијом. Растојања у кристалним структурама између паралелних равни ових прстенова одговарају растојањима карактеристичним за стекинг интеракције (3,0–4,0 Å).

Квантнохемијски прорачуни енергија интеракције на модел-системима, који су засновани на учесталости у кристалним структурама, показују да се енергије најстабилнијих интеракција налазе у опсегу од -3,2 до -3,5 kcal/mol. Ове интеракције су нешто слабије од међусобних интеракција шесточланих прстенова формираних водоничном везом потпомогнутом резонанцијом (-4,7 kcal/mol) [1], међусобних интеракција засићених петочланих прстенова формираних водоничном везом (-4,9 kcal/mol) [2], као и интеракција засићених петочланих прстенова формираних водоничном везом и C₆-ароматичних прстенова (-4,4 kcal/mol) [3]. Ипак, оне су довољно јаке да би могле бити врло корисне у дизајнирању кристалних структура.

Слика. Пример кристалне структуре из Кембричке базе структурних података у којој постоји контакт између С₆-ароматичних прстенова и шесточланих прстенова формираних водоничном везом потпомогнутом резонанцијом

[1] Ј.П. Благојевић Филиповић, М.В. Hall, С.Д. Зарић, Stacking interactions of resonance-assisted hydrogen-bridged rings. A systematic study of crystal structures and quantum chemical calculations, послато

[2] J.P. Blagojević, S.D. Zarić, ChemCommun, 51 (2015) 12989–12991.

[3] J.P. Blagojević, D.Ż. Veljković, S.D. Zarić, CrystEngComm, 19 (2017) 40-46.
STACKING INTERACTIONS OF C₆-AROMATIC RINGS AND SIX-MEMBERED RESONANCE-ASSISTED HYDROGEN-BRIDGED RINGS

J. P. Blagojević Filipović^a, S. D. Zarić^{b,c}

^a Innovation Center of the Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia; ^b Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia; ^c Department of Chemistry, Texas A&M University at Qatar P.O. Box 23874 Doha, Qatar e-mail: szaric@chem.bg.ac.rs

Parallel contacts form 59.4% of contacts between C_6 -aromatic rings and sixmembered resonance-assisted hydrogen-bridged rings found in Cambridge Structural Database. Distances between parallel planes of these rings in crystal structures correspond to distances typical for stacking interactions (3.0–4.0 Å).

Quantum chemical calculations of interaction energies, performed on model systems based on abundance in crystal structures, show that the stongest interactions are in the range between -3.2 kcal/mol and -3.5 kcal/mol. These interactions are somewhat weaker than mutual interactions between six-membered resonance-assisted hydrogen-bridged rings (-4.7 kcal/mol) [1], mutual interactions of saturated five-membered hydrogen-bridged rings (-4.9 kcal/mol) [2], as well as the interactions between saturated five-membered hydrogen-bridged rings (-4.4 kcal/mol) [3]. However, they are strong enough to be possibly very useful in crystal engineering.

Figure. An example of a crystal structure form Cambridge Structural Database where there is a contact between a C_6 -aromatic ring and a six-membered resonance-assisted hydrogen-bridged ring

[1] J.P. Blagojević Filipović, M. B. Hall, S. D. Zarić, Stacking interactions of resonanceassisted hydrogen-bridged rings. A systematic study of crystal structures and quantum chemical calculations, submitted

[2] J.P. Blagojević, S.D. Zarić, ChemCommun, 51 (2015) 12989-12991.

[3] J.P. Blagojević, D.Ž. Veljković, S.D. Zarić, CrystEngComm, 19 (2017) 40-46.

СТЕКИНГ ИНТЕРАКЦИЈЕ СУПСТИТУИСАНИХ МОЛЕКУЛА БЕНЗЕНА

<u>Ј. М. Живковић</u>^а, И. М. Станковић⁶, Д. Б. Нинковић^а, С. Д. Зарић^{в,г}

^а Иновациони центар Хемијског факултета Универзитет у Београду, Студентски трг 12-16, Београд, Србија; ⁶ Институт за хемију, технологију и металургију, Универзитет у Београду, Његошева 12, Београд, Србија; ^е Хемијски факултет, Универзитет у Београду, Студентски трг 12-16, Београд, Србија; ^г Департман за хемију, Тексас A&M Универзитет у Катару, Поштански фах 23874, Доха, Катар e-mail: szaric@chem.bg.ac.rs

Нековалентне интеракције ароматичних прстенова као ароматично/ароматичне интеракције играју важну улогу у хемијским и биохемијским процесима. Ароматичне интеракције су главна стабилишућа сила у нуклеинским киселинама, домаћин-гост системима и структурама у чврстом стању.

Овде смо претраживали Кембричку базу структурних података како бисмо пронашли стекинг интеракције димера бензена, p-фенола и толуена. Поред овога, израчунали смо енергију интеракције димера фенола и толуена и упоредили са димерима бензена који су предходно израчунати. Резултати су показали да стекинг p-фенол/p-фенол димера теже да заузме паралелни или антипаралелну оријентацију док стекинг толуен/толуен димера има скоро искључиво антипаралелну оријентацију. Као и код молекула бензена, број интеракција за p-фенол/p-фенол и толуен/толуен димере расте на великим офсетима (4,0–6,0 Å). Додатно, интеракције p-фенол/p-фенол и толуен/толуен димере за стекинг илтеракције p-фенол. И толуен/толуен димере димера показују пик на офсету 1,5 Å. Потенцијална површ за стекнг интеракције за фенол-фенол и толуен-толуен димере је израчуната, укључујући и интеракције на великим офсетима. Три различите геометрије за паралелне и антипаралелне фенол-фенол и толуен-толуен димере су узете у разматрање.

ДФТ прорачуни су показали да енергије итеракција за фенол/фенол и толуен/толуен димере имају сличне трендове. За паралелне оријентације на негативним и позитивним офсетима најјача интеракција је за $A_{par(+)}$. За антипаралелне оријентације, на негативним офсетима најјача енергија интеракције је за $A_{apar(-)}$ оријентацију, док на позитивним офсетима $B_{apar(+)}$ има најјачу енергију интеракције. Оба система *p*-фенол/*p*-фенол и толуен/толуен, показују тенденцију ка великим офсетима (4,0–6,0 Å) и где је енергија интеракције још увек значајна, као и у случају молекула бензена.

STACKING INTERACTIONS OF SUPSTITUATED BENZENE MOLECULES

J. M. Živković^a, I. M. Stanković^b, D. B. Ninković^a, S. D. Zarić^{c,d}

^aInnovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia; ^bInstitute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, Serbia; ^c Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia; ^d Department of Chemistry, Texas A&M University at Qatar, P. O. Box 23874, Doha, Qatar e-mail: szaric@chem.bg.ac.rs

Non-covalent interactions of aromatic rings as aromatic/aromatic interactions play important role in many chemical and biochemical processes. Aromatic interactions are major stabilizing force in nucleic acid, proteins, host-guest systems and solid-state structures.

Here, we searched the Cambridge Structural Database to find interactions of stacking benzene, p-phenol and toluene dimers. Beside this, we calculated interaction energies of phenol and toluene dimers and compared with benzene dimers previously calculated. The results have shown that stacking p-phenol/p-phenol dimer tends to be orientated in parallel and antiparallel fashion while stacking toluene/toluene dimers have almost exclusively antiparallel orientation of two rings. As for benzene molecules, number of interactions for stacking p-phenol/p-phenol and toluene/toluene dimers is increasing at the large offsets (4.0–6.0 Å). Additionally, interactions of p-phenol/p-phenol and toluene/toluene dimers of stacking interactions of phenol-phenol and toluene-toluene were investigated, including interactions at large offsets. Three different geometries of parallel and antiparallel phenol-phenol and toluene-toluene dimers were considered.

The DFT calculations have shown that the interaction energies for phenol/phenol and toluene/toluene dimers have similar trends. For parallel orientations at negative and positive offsets the strongest interaction energy was for $A_{par(+)}$. For antiparallel orientations, at negative offsets, the strongest interaction energy has $A_{apar(-)}$ orientation, while at positive offset $B_{apar(+)}$ has the strongest interaction. Both systems phenol/phenol and toluene/toluene, show preference for large offsets (4.0–6.0 Å) and have significant interaction energy as benzene molecules.